The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffract...The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.展开更多
In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoen...In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.展开更多
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a...Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.展开更多
In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem...In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.展开更多
The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The metho...The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The method is derived from the compressive sensing theory and the signal is reconstructed by using the basis pursuit algorithm to process the ultrasonic phased array signals.According to the principles of the compressive sensing and signal processing method,non-sparse ultrasonic signals are converted to sparse signals by using sparse transform.The sparse coefficients are obtained by sparse decomposition of the original signal,and then the observation matrix is constructed according to the corresponding sparse coefficients.Finally,the original signal is reconstructed by using basis pursuit algorithm,and error analysis is carried on.Experimental research analysis shows that the signal reconstruction method can reduce the signal complexity and required the space efficiently.展开更多
An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the res...An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.展开更多
Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal...In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.展开更多
3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching C...3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.展开更多
Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a high...Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.展开更多
Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstru...Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile(DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom,the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spreadout Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy.展开更多
A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of...A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of selecting the fixed number of indexes improves the reconstruction efficiency, it also brings the problem of low index selection accuracy. Based on the full study of the theory of compressed sensing, we propose a dynamic indexes selection strategy based on residual update to improve the performance of the compressed sampling matching pursuit algorithm (CoSaMP). As an extension of CoSaMP algorithm, the proposed algorithm adopts a residual comparison strategy to improve the accuracy of backtracking selected indexes. This backtracking strategy can efficiently select backtracking indexes. And without increasing the computational complexity, the proposed improvement algorithm has a higher exact reconstruction rate and peak signal to noise ratio (PSNR). Simulation results demonstrate the proposed algorithm significantly outperforms the CoSaMP for image recovery and one-dimensional signal.展开更多
The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proof...The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.展开更多
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was...The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.展开更多
Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography ang...Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.展开更多
The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterat...The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.展开更多
In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every ...In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.展开更多
To reconstruct the missing data of the total electron content (TEC) observations, a new method is proposed, which is based on the empirical orthogonal functions (EOF) decomposition and the value of eigenvalue itse...To reconstruct the missing data of the total electron content (TEC) observations, a new method is proposed, which is based on the empirical orthogonal functions (EOF) decomposition and the value of eigenvalue itself. It is a self-adaptive EOF decomposition without any prior information needed, and the error of reconstructed data can be estimated. The interval quartering algorithm and cross-validation algorithm are used to compute the optimal number of EOFs for reconstruction. The interval quartering algorithm can reduce the computation time. The application of the data interpolating empirical orthogonal functions (DINEOF) method to the real data have demonstrated that the method can reconstruct the TEC map with high accuracy, which can be employed on the real-time system in the future work.展开更多
The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. More recent methods of measurement employ Electronic Portal...The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. More recent methods of measurement employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit fluence determination. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. An alternative to this approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials [1]. Additionally, this method has been extended to the deconvolution of the patient scatter in order to determine in vivo dosimetry. The method developed here intends to use EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary fluence on the patient. This primary fluence may then be employed, using treatment time volumetric imaging, to determine dose through the entire patient volume. Presented in this paper is the initial discussion of the algorithm, and a theoretical evaluation of its efficacy using montecarlo derived virtual fluence measurements. The results presented here indicate an agreement of 1% dose difference within 95% the field area receiving 10% of the entrance fluence for a set of sample highly modulated fields. These results warrant continued investigation in applying this algorithm to clinical patient treatments.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12027812)the Guangdong Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2021A1515111031)。
文摘The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.
文摘In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
基金This work is supported by Hainan Provincial Natural Science Foundation of China(project number:20166235)project supported by the Education Department of Hainan Province(project number:Hnky2017-57).
文摘Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.
文摘In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.
基金This project is supported by the National Natural Science Foundation of China(Grant No.51305211)Natural Science Foundation of Jiangsu(Grant No.BK20160955)Jiangsu Government Scholarship for Overseas Studies,College students practice and innovation training project of Jiangsu province(Grant No.201710300218),and the PAPD。
文摘The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The method is derived from the compressive sensing theory and the signal is reconstructed by using the basis pursuit algorithm to process the ultrasonic phased array signals.According to the principles of the compressive sensing and signal processing method,non-sparse ultrasonic signals are converted to sparse signals by using sparse transform.The sparse coefficients are obtained by sparse decomposition of the original signal,and then the observation matrix is constructed according to the corresponding sparse coefficients.Finally,the original signal is reconstructed by using basis pursuit algorithm,and error analysis is carried on.Experimental research analysis shows that the signal reconstruction method can reduce the signal complexity and required the space efficiently.
基金Supported by National Natural Science Foundation of China (No.60532020,60301008,60472077,50337020), the High Tech-nique Research and Development Program of China (No.2001AA413210).
文摘An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金supported by National Natural Science Foundation of China (62171390)Central Universities of Southwest Minzu University (ZYN2022032,2023NYXXS034)the State Scholarship Fund of the China Scholarship Council (NO.202008510081)。
文摘In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.
文摘3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.
基金supported by the National Natural Science Foundation of China(Grant No.61372046)the Research Fund for the Doctoral Program ofHigher Education of China(New Teachers)(Grant No.20116101120018)+4 种基金the China Postdoctoral Sci-ence_Foundation_Funded Project(Grant_Nos.2011M501467 and 2012T50814)the Natural Sci-ence Basic Research Plan in Shaanxi Province of China(Grant No.2011JQ1006)the Fund amental Research Funds for the Central Universities(Grant No.GK201302007)Science and Technology Plan Program in Shaanxi Province of China(Grant Nos.2012 KJXX-29 and 2013K12-20-12)the Scienceand Technology Plan Program in Xi'an of China(Grant No.CXY 1348(2)).
文摘Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.
基金supported by Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)(No.7191005)。
文摘Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile(DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom,the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spreadout Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy.
文摘A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of selecting the fixed number of indexes improves the reconstruction efficiency, it also brings the problem of low index selection accuracy. Based on the full study of the theory of compressed sensing, we propose a dynamic indexes selection strategy based on residual update to improve the performance of the compressed sampling matching pursuit algorithm (CoSaMP). As an extension of CoSaMP algorithm, the proposed algorithm adopts a residual comparison strategy to improve the accuracy of backtracking selected indexes. This backtracking strategy can efficiently select backtracking indexes. And without increasing the computational complexity, the proposed improvement algorithm has a higher exact reconstruction rate and peak signal to noise ratio (PSNR). Simulation results demonstrate the proposed algorithm significantly outperforms the CoSaMP for image recovery and one-dimensional signal.
基金National Natural Science Foundation of China(No.61171179,No.61171178)Natural Science Foundation of Shanxi Province(No.2010011002-1,No.2010011002-2and No.2012021011-2)
文摘The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.
基金supported by National Natural Science Foundation of China (52178422)Doctoral Research Foundation of Hubei University of Arts and Science (2059047)National College Students’Innovation and Entrepreneurship Training Program (202210519021).
文摘The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.
文摘Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natural Science Foundation of China(Grant No.61372172)
文摘The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.
文摘In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.41105013,41375028,and 61271106)the National Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011122)the Key Laboratory of Meteorological Observation and Information Processing Scientific Research Fund of Jiangsu Province,China(Grant No.KDXS1205)
文摘To reconstruct the missing data of the total electron content (TEC) observations, a new method is proposed, which is based on the empirical orthogonal functions (EOF) decomposition and the value of eigenvalue itself. It is a self-adaptive EOF decomposition without any prior information needed, and the error of reconstructed data can be estimated. The interval quartering algorithm and cross-validation algorithm are used to compute the optimal number of EOFs for reconstruction. The interval quartering algorithm can reduce the computation time. The application of the data interpolating empirical orthogonal functions (DINEOF) method to the real data have demonstrated that the method can reconstruct the TEC map with high accuracy, which can be employed on the real-time system in the future work.
文摘The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. More recent methods of measurement employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit fluence determination. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. An alternative to this approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials [1]. Additionally, this method has been extended to the deconvolution of the patient scatter in order to determine in vivo dosimetry. The method developed here intends to use EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary fluence on the patient. This primary fluence may then be employed, using treatment time volumetric imaging, to determine dose through the entire patient volume. Presented in this paper is the initial discussion of the algorithm, and a theoretical evaluation of its efficacy using montecarlo derived virtual fluence measurements. The results presented here indicate an agreement of 1% dose difference within 95% the field area receiving 10% of the entrance fluence for a set of sample highly modulated fields. These results warrant continued investigation in applying this algorithm to clinical patient treatments.