A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and si...A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.展开更多
The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, whic...The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.展开更多
We present the first millennial-length gridded field reconstruction of annual temperature for China, and analyze the reconstruction for spatiotemporal changes and associated uncertainties, based on a network of 415 we...We present the first millennial-length gridded field reconstruction of annual temperature for China, and analyze the reconstruction for spatiotemporal changes and associated uncertainties, based on a network of 415 well-distributed and accurately dated climatic proxy series.The new reconstruction method is a modified form of the point-by-point regression (PPR) approach.The main difference is the incorporation of the "composite plus scale" (CPS) and "Regularized errors-in-variables" (EIV) algorithms to allow for the assimilation of various types of the proxy data.Furthermore, the search radius is restricted to a grid size; this restriction helps effectively exclude proxy data possibly correlated with temperature but belonging to a different climate region.The results indicate that: 1) the past temperature record in China is spatially heterogenic, with variable correlations between cells in time; 2) the late 20th century warming in China probably exceeds mean temperature levels at any period of the past 1000 years, but the temperature anomalies of some grids in eastern China during the Medieval climate anomaly period are warmer than during the modern warming; 3) the climatic variability in the eastern and western regions of China was not synchronous during much of the last millennium, probably due to the influence of the Tibetan Plateau.Our temperature reconstruction may serve as a reference to test simulation results over the past millennium, and help to finely analyze the spatial characteristics and the driving mechanism of the past temperature variability.However, the lower reconstruction skill scores for some grid points underline that the present set of available proxy data series is not yet sufficient to accurately reconstruct the heterogeneous climate of China in all regions, and that there is the need for more highly resolved temperature proxies, particularly in the Tibetan Plateau.展开更多
基金Supported by the National Natural Science Foundation of China(52005500)Foundation of Tianjin Educational Committee(2018KJ242)Basic Science-Research Funds of National University(3122019088)。
文摘A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.
基金Project Supported by National Nature Science Foundation of China (50578034) Science and Technology Development Foundation ofDonghua University
文摘The soft measurement technology of flame temperature field is an efficient method to learn the combustion status in furnace. Generally, it reconstructs the temperature field in furnace through the image of flame, which is a process to solve radiative inverse problem. In this paper, the flame of pulverized coal is considered as 3-D, absorbing, emitting, and anisotropically scattering non-gray medium. Through the study on inverse problem of radiative heat transfer, the temperature field in this kind of medium has been reconstructed. The mechanism of 3-D radiative heat transfer in a rectangular media, which is 2 m×3 m× 5 m and full of CO2, N2 and carbon particles, is studied with Monte Carlo method. The 3-D temperature field in this rectangular space is reconstructed and the influence of particles density profile is discussed.
基金supported by the CAS Strategic Priority Research Program(Grant No.XDA05080801)the National Basic Research Program of China(Grant No.2010CB950104)+3 种基金the Chinese Academy of Sciences 100 Talents Project(Grant No.29082762)the National Natural Science Foundation of China(Grant No.40871091)Feng Shi was supported by the West Light Program for Talent Cultivation of Chinese Academy of Sciences and China Meteorological Administration Drought Research Fund(Grant Nos.IAM201213 and IAM201109)Lucien von Gunten was supported by the Swiss NSF(Grant No.PBBEP2-126056)
文摘We present the first millennial-length gridded field reconstruction of annual temperature for China, and analyze the reconstruction for spatiotemporal changes and associated uncertainties, based on a network of 415 well-distributed and accurately dated climatic proxy series.The new reconstruction method is a modified form of the point-by-point regression (PPR) approach.The main difference is the incorporation of the "composite plus scale" (CPS) and "Regularized errors-in-variables" (EIV) algorithms to allow for the assimilation of various types of the proxy data.Furthermore, the search radius is restricted to a grid size; this restriction helps effectively exclude proxy data possibly correlated with temperature but belonging to a different climate region.The results indicate that: 1) the past temperature record in China is spatially heterogenic, with variable correlations between cells in time; 2) the late 20th century warming in China probably exceeds mean temperature levels at any period of the past 1000 years, but the temperature anomalies of some grids in eastern China during the Medieval climate anomaly period are warmer than during the modern warming; 3) the climatic variability in the eastern and western regions of China was not synchronous during much of the last millennium, probably due to the influence of the Tibetan Plateau.Our temperature reconstruction may serve as a reference to test simulation results over the past millennium, and help to finely analyze the spatial characteristics and the driving mechanism of the past temperature variability.However, the lower reconstruction skill scores for some grid points underline that the present set of available proxy data series is not yet sufficient to accurately reconstruct the heterogeneous climate of China in all regions, and that there is the need for more highly resolved temperature proxies, particularly in the Tibetan Plateau.