The characteristics of seismic water level fluctuations of the two Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 on December 26,2004 and March 29,2005 recorded at Jiaji well,Qionghai,Hainan were analyz...The characteristics of seismic water level fluctuations of the two Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 on December 26,2004 and March 29,2005 recorded at Jiaji well,Qionghai,Hainan were analyzed,the features of the infrequent "step" changes of well water level after the two earthquakes were also analyzed and the mechanism of the "step change" of well water level was discussed.Then the high-sample-rate digital observation data of seismically-induced water level fluctuations of the Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 recorded at Nanbin well,Sanya and Tanniu well,Wenchang were analyzed.The results suggest that the dominant period of the seismic well water level fluctuation in all three wells was comparatively accordant,the amplitudes of seismic water level fluctuation of the same earthquake in different wells were clearly different,the time duration of seismic water level fluctuations of different earthquakes at the same well was also clearly different.展开更多
Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic pa...Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.展开更多
基金sponsored by Joint Earthquake Science Foundation of China (105086)
文摘The characteristics of seismic water level fluctuations of the two Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 on December 26,2004 and March 29,2005 recorded at Jiaji well,Qionghai,Hainan were analyzed,the features of the infrequent "step" changes of well water level after the two earthquakes were also analyzed and the mechanism of the "step change" of well water level was discussed.Then the high-sample-rate digital observation data of seismically-induced water level fluctuations of the Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 recorded at Nanbin well,Sanya and Tanniu well,Wenchang were analyzed.The results suggest that the dominant period of the seismic well water level fluctuation in all three wells was comparatively accordant,the amplitudes of seismic water level fluctuation of the same earthquake in different wells were clearly different,the time duration of seismic water level fluctuations of different earthquakes at the same well was also clearly different.
基金supported by National Natural Science Foundation of China (No. 40574020)Basic Research item of Institute of Earthquake Science, China Earthquake Administration (No. 0207690236).
文摘Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.