Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization tre...Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization treatment was proposed.The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined.Crussard-Jaoul(C-J)analysis was employed to examine the work hardening characteristics during the tensile test.During decarburization by heat treatments,the carbon content within the austenite phase decreased,while Mn and Al were almost unchanged;this made the steel with full austenite transform into the austenite and ferrite dual phase.Meanwhile,(Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same.In addition,the formation of other carbides restrained.Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution.For the steel with the single austinite,the deformation mode of austenite was the dislocation planar glide,resulting in the formation of microbands.For the dual-phase steel,the deformation occurred by the dislocation planar glide of austenite first,with the increase in strain,the cross slip of ferrite took place,forming dislocation cells in ferrite.At the late stage of deformation,the work hardening of austinite increased rapidly,while that of ferrite increased slightly.展开更多
The aim of the present study is developing “Working Memory Training Software”, and investigating its content validity and the efficacy of this computerized cognitive training on students working memory. This study i...The aim of the present study is developing “Working Memory Training Software”, and investigating its content validity and the efficacy of this computerized cognitive training on students working memory. This study is in R & D research category, and it is performed in a semi-experimental design. Its data were collected from students of the third grade (30), fourth grade (30), and fifth grade (12) of primary school. After specifying the software content validity by asking expertise opinions, and investigating these opinions through Spearman Test (rs = 1), these children attended in intervention program for 10 sessions. The subtests of working memory in “Tehran-Stanford-Binet Intelligence Scale” and “Wechsler intelligence scale for children” were conducted in all three groups on the pre-test and post-test. After elimination of the pre-test effect, Paired-Samples T-Test on total scores of subtests of working memory in “Tehran-Stanford Binet Intelligence Scale” (t = 10.869, df = 71, r = 0.967 & P < 0.05) and in “Wechsler intelligence scale for children” (t = 16.809, df = 71, r = 0.983 & P < 0.05) reveals a significant difference in post-test scores. Based on this study the Working Memory Training Software has proper psychometric properties and causes significant improvement in students working memory performance.展开更多
The Ti_(p)/ZX60 composites with different Ti_(p) contents were prepared by semi-solid stirring casting.After extrusion,the microstructure,work hardening and softening behavior of the Ti_(p)/ZX60 composites were analyz...The Ti_(p)/ZX60 composites with different Ti_(p) contents were prepared by semi-solid stirring casting.After extrusion,the microstructure,work hardening and softening behavior of the Ti_(p)/ZX60 composites were analyzed compared with the ZX60(Mg-6Zn-0.2Ca)alloy.The results showed that the addition of Ti_(p) could not only promote the nucleation of dynamic recrystallized(DRXed)grains,but also be propitious to the refinement of DRXed grains.With increasing Ti_(p) content,the size of DRXed grains decreased accompanied with increasing volume fraction of DRXed grains.As the Ti_(p) content increased to 15 vol.%,the average size and volume fraction of DRXed grains reached to~0.32μm and 93.2%,respectively.Besides,both the strength and elongation were improved by the addition of Ti_(p).With increasing content of Ti_(p),a substantial increase in the strength was achieved with little change in the elongation.However,the elongation decreased sharply when the Ti_(p) content further increased to 15 vol.%.The addition of Ti_(p) led to an increase in the work hardening rate,which gradually increased with increasing Ti_(p) content.However,the softening rate did not demonstrate the same tendency with increasing Ti_(p) content.Unlike the conventional ceramic particles,the Ti_(p) can be deformed in coordination with the matrix alloy,which imparted a higher softening rate to the matrix alloy.Even though the softening rate improved as the Ti_(p) content increased from 5 to 10 vol.%,it dropped deeply as the Ti_(p) content increased to 15 vol.%owing to the fracture of Ti_(p) during extrusion.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.U2141207,52171111,and 52001083)the Youth Talent Project of China National Nuclear Corporation(No.CNNC2021Y-TEPHEU01)+3 种基金the China Postdoctoral Science Foundation(No.2020M681077)the Natural Science Foundation of Heilongjiang,China(No.LH2019E030)the Heilongjiang Postdoctoral Science Foundation,China(No.LBH-Z19125)he Heilongjiang Touyan Innovation Team Program,China,and the Natural Science Foundation of Heilongjiang(No.LH2020E060)。
文摘Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization treatment was proposed.The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined.Crussard-Jaoul(C-J)analysis was employed to examine the work hardening characteristics during the tensile test.During decarburization by heat treatments,the carbon content within the austenite phase decreased,while Mn and Al were almost unchanged;this made the steel with full austenite transform into the austenite and ferrite dual phase.Meanwhile,(Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same.In addition,the formation of other carbides restrained.Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution.For the steel with the single austinite,the deformation mode of austenite was the dislocation planar glide,resulting in the formation of microbands.For the dual-phase steel,the deformation occurred by the dislocation planar glide of austenite first,with the increase in strain,the cross slip of ferrite took place,forming dislocation cells in ferrite.At the late stage of deformation,the work hardening of austinite increased rapidly,while that of ferrite increased slightly.
文摘The aim of the present study is developing “Working Memory Training Software”, and investigating its content validity and the efficacy of this computerized cognitive training on students working memory. This study is in R & D research category, and it is performed in a semi-experimental design. Its data were collected from students of the third grade (30), fourth grade (30), and fifth grade (12) of primary school. After specifying the software content validity by asking expertise opinions, and investigating these opinions through Spearman Test (rs = 1), these children attended in intervention program for 10 sessions. The subtests of working memory in “Tehran-Stanford-Binet Intelligence Scale” and “Wechsler intelligence scale for children” were conducted in all three groups on the pre-test and post-test. After elimination of the pre-test effect, Paired-Samples T-Test on total scores of subtests of working memory in “Tehran-Stanford Binet Intelligence Scale” (t = 10.869, df = 71, r = 0.967 & P < 0.05) and in “Wechsler intelligence scale for children” (t = 16.809, df = 71, r = 0.983 & P < 0.05) reveals a significant difference in post-test scores. Based on this study the Working Memory Training Software has proper psychometric properties and causes significant improvement in students working memory performance.
基金supported financially by the National Natural Science Foundation of China (Nos.52271109 and 52001223)the authors also thank the Support from the"the National Key Research and Development Program for Young Scientists" (No.2021YFB3703300)the Special Fund Project for Guiding Local Science and Technology Development by the Central Government (No.YDZJSX2021B019).
文摘The Ti_(p)/ZX60 composites with different Ti_(p) contents were prepared by semi-solid stirring casting.After extrusion,the microstructure,work hardening and softening behavior of the Ti_(p)/ZX60 composites were analyzed compared with the ZX60(Mg-6Zn-0.2Ca)alloy.The results showed that the addition of Ti_(p) could not only promote the nucleation of dynamic recrystallized(DRXed)grains,but also be propitious to the refinement of DRXed grains.With increasing Ti_(p) content,the size of DRXed grains decreased accompanied with increasing volume fraction of DRXed grains.As the Ti_(p) content increased to 15 vol.%,the average size and volume fraction of DRXed grains reached to~0.32μm and 93.2%,respectively.Besides,both the strength and elongation were improved by the addition of Ti_(p).With increasing content of Ti_(p),a substantial increase in the strength was achieved with little change in the elongation.However,the elongation decreased sharply when the Ti_(p) content further increased to 15 vol.%.The addition of Ti_(p) led to an increase in the work hardening rate,which gradually increased with increasing Ti_(p) content.However,the softening rate did not demonstrate the same tendency with increasing Ti_(p) content.Unlike the conventional ceramic particles,the Ti_(p) can be deformed in coordination with the matrix alloy,which imparted a higher softening rate to the matrix alloy.Even though the softening rate improved as the Ti_(p) content increased from 5 to 10 vol.%,it dropped deeply as the Ti_(p) content increased to 15 vol.%owing to the fracture of Ti_(p) during extrusion.