The strength of traditional commercially pure titanium(CP-Ti) alloys often fails to meet the demand of structural materials. In order to enhance their mechanical properties, the cold-rolled CP-Ti alloys were annealed ...The strength of traditional commercially pure titanium(CP-Ti) alloys often fails to meet the demand of structural materials. In order to enhance their mechanical properties, the cold-rolled CP-Ti alloys were annealed at different temperatures, and the recrystallization behavior and texture evolution were investigated. It was found that the bimodal microstructure(equiaxed and elongated grains) was formed after partial recrystallization, and the corresponding sample exhibited an excellent combination of ultimate tensile strength(702 MPa) and total elongation(36.4%). The recrystallization nucleation of CP-Ti sheets occurred preferentially in the high strain and the high-angle grain boundaries(HAGBs) regions. Meanwhile, the internal misorientations of the deformed heterogeneous grains increased and transformed into HAGBs, which further promoted the recrystallization nucleation. The main recrystallization texture was basal TD-split texture transformed from cold-rolled basal RD-split texture, and the oriented nucleation played a dominated role during recrystallization.展开更多
The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equat...The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equation was established to describe the relationship of the flow stress,temperature,and strain rate during thermal deformation.The effect of the thermal deformation conditions on the microstructure evolution of alloys was studied using electron backscatter diffraction.The results revealed that the thermal deformation activation energy of the as-cast alloy was greater than that of the wrought alloy.The dynamic recrystallization(DRX)process is slow at intermediate strain rate(0.1 s^(−1))due to the comprehensive influence of various factors,such as the critical strain of DRX nucleation and stored energy.The DRX volume fraction increases with the improvement of deformation temperature.The varied dynamic softening mechanisms induce the different thermal deformation behaviors of as-cast and wrought alloys.The dynamic recovery,discontinuous dynamic recrystallization(DDRX)and nucleation at slip zone caused by strain incompatibility in grains were observed during thermal deformation of as-cast alloys.In the process of thermal deformation of wrought alloys,DDRX was the primary dynamic crystallization mechanism.The continuous dynamic recrystallization was an auxiliary nucleation mechanism.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52104372)the Fundamental Research Funds for the Central Universities,China (No.N2107001)the China Postdoctoral Science Foundation (No.2019M651129)。
文摘The strength of traditional commercially pure titanium(CP-Ti) alloys often fails to meet the demand of structural materials. In order to enhance their mechanical properties, the cold-rolled CP-Ti alloys were annealed at different temperatures, and the recrystallization behavior and texture evolution were investigated. It was found that the bimodal microstructure(equiaxed and elongated grains) was formed after partial recrystallization, and the corresponding sample exhibited an excellent combination of ultimate tensile strength(702 MPa) and total elongation(36.4%). The recrystallization nucleation of CP-Ti sheets occurred preferentially in the high strain and the high-angle grain boundaries(HAGBs) regions. Meanwhile, the internal misorientations of the deformed heterogeneous grains increased and transformed into HAGBs, which further promoted the recrystallization nucleation. The main recrystallization texture was basal TD-split texture transformed from cold-rolled basal RD-split texture, and the oriented nucleation played a dominated role during recrystallization.
基金This research was supported by the National Energy Application Technology Research and Engineering Demonstration Program(NY20150101).
文摘The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equation was established to describe the relationship of the flow stress,temperature,and strain rate during thermal deformation.The effect of the thermal deformation conditions on the microstructure evolution of alloys was studied using electron backscatter diffraction.The results revealed that the thermal deformation activation energy of the as-cast alloy was greater than that of the wrought alloy.The dynamic recrystallization(DRX)process is slow at intermediate strain rate(0.1 s^(−1))due to the comprehensive influence of various factors,such as the critical strain of DRX nucleation and stored energy.The DRX volume fraction increases with the improvement of deformation temperature.The varied dynamic softening mechanisms induce the different thermal deformation behaviors of as-cast and wrought alloys.The dynamic recovery,discontinuous dynamic recrystallization(DDRX)and nucleation at slip zone caused by strain incompatibility in grains were observed during thermal deformation of as-cast alloys.In the process of thermal deformation of wrought alloys,DDRX was the primary dynamic crystallization mechanism.The continuous dynamic recrystallization was an auxiliary nucleation mechanism.