We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mix...We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.展开更多
To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial...To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial domain decomposition parallelization(DDP) are combined by message passing interface(MPI) language. The DDP–DOM computation of the radiation heat transfer within the rectangular furnace is described. When the result of DDP–DOM along one-dimensional direction is compared with that along multi-dimensional directions, it is found that the result of the latter one has higher precision without considering the medium scattering. Meanwhile, an in-depth study of the convergence of DDP–DOM for radiation heat transfer is made. Analyzing the cause of the weak convergence, we relate the total number of iteration steps when the convergence is obtained to the number of sub-domains. When we decompose the spatial domain along one-,two- and three-dimensional directions, different linear relationships between the number of total iteration steps and the number of sub-domains will be possessed separately, then several equations are developed to show the relationships. Using the equations, some phenomena in DDP–DOM can be made clear easily. At the same time, the correctness of the equations is verified.展开更多
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China 10971074+1 种基金the National Basic Research Program under the Grant 2005CB321703Hunan Provincial Innovation Foundation For Postgraduate CX2009B119.
文摘We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.
基金co-supported by the National Nature Science Foundation of China(No.51176039)the Ph.D.Programs Foundation of Ministry of Education of China(No.20102302110015)
文摘To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial domain decomposition parallelization(DDP) are combined by message passing interface(MPI) language. The DDP–DOM computation of the radiation heat transfer within the rectangular furnace is described. When the result of DDP–DOM along one-dimensional direction is compared with that along multi-dimensional directions, it is found that the result of the latter one has higher precision without considering the medium scattering. Meanwhile, an in-depth study of the convergence of DDP–DOM for radiation heat transfer is made. Analyzing the cause of the weak convergence, we relate the total number of iteration steps when the convergence is obtained to the number of sub-domains. When we decompose the spatial domain along one-,two- and three-dimensional directions, different linear relationships between the number of total iteration steps and the number of sub-domains will be possessed separately, then several equations are developed to show the relationships. Using the equations, some phenomena in DDP–DOM can be made clear easily. At the same time, the correctness of the equations is verified.