Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying ...Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.展开更多
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonia...The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.展开更多
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firs...The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.展开更多
A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simpl...A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simply supported points gradually increases the solution can infinitely approach to Navier's solution. For the square plate simply supported on the middle of each edge and free at each corner, the results are very close to the numerical solutions in the past.展开更多
A rectangular thin plate vibration model subjected to inplane stochastic excitation is simplified to a quasinonintegrable Hamiltonian system with two degrees of freedom. Subsequently a one-dimensional Ito stochastic d...A rectangular thin plate vibration model subjected to inplane stochastic excitation is simplified to a quasinonintegrable Hamiltonian system with two degrees of freedom. Subsequently a one-dimensional Ito stochastic differential equation for the system is obtained by applying the stochastic averaging method for quasi-nonintegrable Hamiltonian systems. The conditional reliability function and conditional probability density are both gained by solving the backward Kolmogorov equation numerically. Finally, a stochastic optimal control model is proposed and solved. The numerical results show the effectiveness of this method.展开更多
A stochastic nonlinear dynamical model is proposed to describe the vibration of rectangular thin plate under axial inplane excitation considering the influence of random environment factors. Firstly, the model is simp...A stochastic nonlinear dynamical model is proposed to describe the vibration of rectangular thin plate under axial inplane excitation considering the influence of random environment factors. Firstly, the model is simplified by applying the stochastic averaging method of quasi-nonintegrable Hamilton system. Secondly, the methods of Lyapunov exponent and boundary classification associated with diffusion process are utilized to analyze the stochastic stability of the trivial solution of the system. Thirdly, the stochastic Hopf bifurcation of the vibration model is explored according to the qualitative changes in stationary probability density of system response, showing that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simple way on the potential applications of stochastic stability and bifurcation analysis.展开更多
Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bendin...Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given.展开更多
By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate wi...By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.展开更多
Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitat...Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitation. A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. A one-to- one internal resonance is considered. An averaged equation is obtained with a multi-scale method. After transforming the averaged equation into a standard form, the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics, which can be used to explain the mechanism of modal interactions of thin plates. A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits. Furthermore, restrictions on the damping, excitation, and detuning parameters are obtained, under which the multi-pulse chaotic dynamics is expected. The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.展开更多
A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration ...A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.展开更多
We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangula...We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangular thin plate and the ex-pressions of electromagnetic forces,the vibration equations are derived for the mechanical loading in a steady transverse magnetic field.Using the Melnikov function method,the criteria are obtained for chaos motion to exist as demonstrated by the Smale horseshoe mapping.The vibration equations are solved numerically by a fourth-order Runge-Kutta method.Its bifurcation dia-gram,Lyapunov exponent diagram,displacement wave diagram,phase diagram and Poincare section diagram are obtained.展开更多
With the idea of the phononic crystals, a thin rectangular plate with two-dimensional periodic structure is designed. Flexural wave band structures of such a plate with infinite structure are calculated with the plane...With the idea of the phononic crystals, a thin rectangular plate with two-dimensional periodic structure is designed. Flexural wave band structures of such a plate with infinite structure are calculated with the plane-wave expansion (PWE) method, and directional band gaps are found in the ΓX direction. The acceleration frequency response in the ΓX direction of such a plate with finite structure is simulated with the finite element method and verified with a vibration experiment. The frequency ranges of sharp drops in the calculated and measured acceleration frequency response curves are in basic agreement with those in the band structures. Thin plate is a widely used component in the engineering structures. The existence of band gaps in such periodic structures gives a new idea in vibration control of thin plates.展开更多
The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin pl...The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by von Karman type equation and Galerkin's approac...The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by von Karman type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, the theory of the normal form is used to give the explicit expressions of the normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, a global bifurcation analysis of the parametrically excited rectangular thin plate is given by the global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is also found by numerical simulation.展开更多
This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the ...This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the plate subjected to by a concentrated force equally at four corner points respectively. We select a flexural function which satisfies not only all the geometric boundary conditions on free edges wholly but also the boundary conditions of the total internal forces. We apply the variational method meanwhile and then obtain better approximate solutions.展开更多
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific...Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.展开更多
In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The ...In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.展开更多
基金supported by the Natural Science Foundation of Hebei Province of China(No.E2010001254)
文摘Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.
基金Supported by the National Natural Science Foundation of China under Grant No.10962004the Natural Science Foundation of Inner Mongolia under Grant No.2009BS0101+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002the Cultivation of Innovative Talent of "211 Project"of Inner Mongolia University
文摘The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.
文摘The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.
文摘A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simply supported points gradually increases the solution can infinitely approach to Navier's solution. For the square plate simply supported on the middle of each edge and free at each corner, the results are very close to the numerical solutions in the past.
基金Supported by National Natural Science Foundation of China (No.10732020)
文摘A rectangular thin plate vibration model subjected to inplane stochastic excitation is simplified to a quasinonintegrable Hamiltonian system with two degrees of freedom. Subsequently a one-dimensional Ito stochastic differential equation for the system is obtained by applying the stochastic averaging method for quasi-nonintegrable Hamiltonian systems. The conditional reliability function and conditional probability density are both gained by solving the backward Kolmogorov equation numerically. Finally, a stochastic optimal control model is proposed and solved. The numerical results show the effectiveness of this method.
基金Supported by National Natural Science Foundation of China (No.10732020)
文摘A stochastic nonlinear dynamical model is proposed to describe the vibration of rectangular thin plate under axial inplane excitation considering the influence of random environment factors. Firstly, the model is simplified by applying the stochastic averaging method of quasi-nonintegrable Hamilton system. Secondly, the methods of Lyapunov exponent and boundary classification associated with diffusion process are utilized to analyze the stochastic stability of the trivial solution of the system. Thirdly, the stochastic Hopf bifurcation of the vibration model is explored according to the qualitative changes in stationary probability density of system response, showing that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simple way on the potential applications of stochastic stability and bifurcation analysis.
文摘Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given.
文摘By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.
基金Project supported the National Natural Science Foundation of China (Nos. 10732020,11072008,and 11102226)the Scientific Research Foundation of Civil Aviation University of China (No. 2010QD04X)the Fundamental Research Funds for the Central Universities of China (Nos. ZXH2011D006 and ZXH2012K004)
文摘Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitation. A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. A one-to- one internal resonance is considered. An averaged equation is obtained with a multi-scale method. After transforming the averaged equation into a standard form, the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics, which can be used to explain the mechanism of modal interactions of thin plates. A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits. Furthermore, restrictions on the damping, excitation, and detuning parameters are obtained, under which the multi-pulse chaotic dynamics is expected. The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.
基金Project supported by the National Natural Science Foundation of China(No.11202190)the Natural Science Foundation for Young Scientists of Shanxi Province of China(No.201801D221037)the China Postdoctoral Science Foundation(No.2018M640373)
文摘A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.
基金Project(No. A2006000190)supported by the Natural Science Foundation of Hebei Province,China
文摘We studied the problem of bifurcation and chaos in a 4-side fixed rectangular thin plate in electromagnetic and me-chanical fields.Based on the basic nonlinear electro-magneto-elastic motion equations for a rectangular thin plate and the ex-pressions of electromagnetic forces,the vibration equations are derived for the mechanical loading in a steady transverse magnetic field.Using the Melnikov function method,the criteria are obtained for chaos motion to exist as demonstrated by the Smale horseshoe mapping.The vibration equations are solved numerically by a fourth-order Runge-Kutta method.Its bifurcation dia-gram,Lyapunov exponent diagram,displacement wave diagram,phase diagram and Poincare section diagram are obtained.
基金This project is supported by National Basic Research Program of China (973Program, No.51307).
文摘With the idea of the phononic crystals, a thin rectangular plate with two-dimensional periodic structure is designed. Flexural wave band structures of such a plate with infinite structure are calculated with the plane-wave expansion (PWE) method, and directional band gaps are found in the ΓX direction. The acceleration frequency response in the ΓX direction of such a plate with finite structure is simulated with the finite element method and verified with a vibration experiment. The frequency ranges of sharp drops in the calculated and measured acceleration frequency response curves are in basic agreement with those in the band structures. Thin plate is a widely used component in the engineering structures. The existence of band gaps in such periodic structures gives a new idea in vibration control of thin plates.
基金funded by the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Natural Science Research Project of Higher Education Institutions in Anhui Province(2022AH040045)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(2021-YF22).
文摘The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
基金The project supported by the National Natural Science Foundation of China (10072004) and by the Natural Science Foundation of Beijing (3992004)
文摘The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by von Karman type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, the theory of the normal form is used to give the explicit expressions of the normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, a global bifurcation analysis of the parametrically excited rectangular thin plate is given by the global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is also found by numerical simulation.
文摘This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the plate subjected to by a concentrated force equally at four corner points respectively. We select a flexural function which satisfies not only all the geometric boundary conditions on free edges wholly but also the boundary conditions of the total internal forces. We apply the variational method meanwhile and then obtain better approximate solutions.
文摘Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.
文摘In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.