Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 × 4 ( columns × rows) finned-tube heat exchanger w...Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 × 4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s, the heal transfer rate ranged from 21.8 to47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8 ℃. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are DrODosed based on the experimental results.展开更多
基金Sponsored by the National Natural Science Special Foundation of China(Grant No.50323001)Xi'an Jiaotong University Doctoral Foundation forTeacher.
文摘Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 × 4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s, the heal transfer rate ranged from 21.8 to47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8 ℃. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are DrODosed based on the experimental results.