I. Increase in Human Activity and Occurrence of Geological Disasters "A geological disaster is a natural disaster that happens in a geo- logical environment. It is a geological effect (phenomenon) caused or in- flu...I. Increase in Human Activity and Occurrence of Geological Disasters "A geological disaster is a natural disaster that happens in a geo- logical environment. It is a geological effect (phenomenon) caused or in- fluenced by Nature and (or) human factors that leads to losses to human life, property and the environment.TM Based on their cause, geological disasters can be divided into natural geological and artificial geological disasters. Natural geological disas- ters include those caused by natural effects. These include typhoons, rain- fall, melting snow and earthquakes,展开更多
Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifier...Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency(VCE) and power conversion efficiency(PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated.It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits.展开更多
文摘I. Increase in Human Activity and Occurrence of Geological Disasters "A geological disaster is a natural disaster that happens in a geo- logical environment. It is a geological effect (phenomenon) caused or in- fluenced by Nature and (or) human factors that leads to losses to human life, property and the environment.TM Based on their cause, geological disasters can be divided into natural geological and artificial geological disasters. Natural geological disas- ters include those caused by natural effects. These include typhoons, rain- fall, melting snow and earthquakes,
基金Project supported by the National Natural Science Foundation of China(Nos.61131001,61404077,61571248)the Science and Technology Fund of Zhejiang Province(No.2015C31090)+2 种基金the Natural Science Foundation of Ningbo(No.2014A610147)State Key Laboratory of ASIC&System(No.2015KF006)the K.C.Wong Magna Fund in Ningbo University
文摘Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency(VCE) and power conversion efficiency(PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated.It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits.