Analysis of stock recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually re...Analysis of stock recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually result in a biased regression analysis. This paper presents a robust regression method, least median of squared orthogonal distance (LMD), which is insensitive to abnormal values in the dependent and independent variables in a regression analysis. Outliers that have significantly different variance from the rest of the data can be identified in a residual analysis. Then, the least squares (LS) method is applied to the SR data with defined outliers being down weighted. The application of LMD and LMD based Reweighted Least Squares (RLS) method to simulated and real fisheries SR data is explored.展开更多
Based on the least-square minimization a computationally efficient learning algorithm for the Principal Component Analysis(PCA) is derived. The dual learning rate parameters are adaptively introduced to make the propo...Based on the least-square minimization a computationally efficient learning algorithm for the Principal Component Analysis(PCA) is derived. The dual learning rate parameters are adaptively introduced to make the proposed algorithm providing the capability of the fast convergence and high accuracy for extracting all the principal components. It is shown that all the information needed for PCA can be completely represented by the unnormalized weight vector which is updated based only on the corresponding neuron input-output product. The convergence performance of the proposed algorithm is briefly analyzed.The relation between Oja’s rule and the least squares learning rule is also established. Finally, a simulation example is given to illustrate the effectiveness of this algorithm for PCA.展开更多
In this paper,a new recursive least squares(RLS)identification algorithm with variable-direction forgetting(VDF)is proposed for multi-output systems.The objective is to enhance parameter estimation performance under n...In this paper,a new recursive least squares(RLS)identification algorithm with variable-direction forgetting(VDF)is proposed for multi-output systems.The objective is to enhance parameter estimation performance under non-persistent excitation.The proposed algorithm performs oblique projection decomposition of the information matrix,such that forgetting is applied only to directions where new information is received.Theoretical proofs show that even without persistent excitation,the information matrix remains lower and upper bounded,and the estimation error variance converges to be within a finite bound.Moreover,detailed analysis is made to compare with a recently reported VDF algorithm that exploits eigenvalue decomposition(VDF-ED).It is revealed that under non-persistent excitation,part of the forgotten subspace in the VDF-ED algorithm could discount old information without receiving new data,which could produce a more ill-conditioned information matrix than our proposed algorithm.Numerical simulation results demonstrate the efficacy and advantage of our proposed algorithm over this recent VDF-ED algorithm.展开更多
本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN...本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN网络的输入特征为噪声信号的复数频谱(包括实部谱和虚部谱).网络结构中,采用编码模块从噪声复数频谱中提取特征,利用双解码模块分别估计网络输出的实部谱和虚部谱,采用参数共享机制和组策略以降低训练参数的数量并提高网络的学习能力和泛化能力.特别是针对风噪声,选用新的损失函数以及对训练数据进行正则化处理以提升DCRN的性能.实验结果表明,DCRN方法在仿真环境与有源降噪耳机环境下对一般噪声和风噪声都表现出良好的降噪性能和鲁棒性.展开更多
针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的...针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的自我迭代等方式进行滤波,对噪声识别能力和滤波速度上均优于美国地质调查局(United States Geological Survey,USGS)所推荐的传统滤波方法,并可有效降低滤波后对原始波形的失真损坏以及相位提前等问题。同时,运用所提自适应滤波方法将其应用于不同场地类型台站的含速度脉冲近场地震记录,进一步验证了自适应滤波方法的有效性和适用性。研究成果为地震工程领域的滤波分析提出了一种新思路和新方法,也可为地震记录处理及相关应用工作提供参考。展开更多
针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积...针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积分滑模变结构控制策略。谐波检测环节采用改进的瞬时无功功率理论的id-iq法,用RLS自适应滤波器替换传统的Butterworth低通滤波器,解决了传统的Butterworth低通滤波器因延时而导致的一个基波周期(20 ms)内检测盲区问题。谐波电流跟踪环节采用全局积分滑模变结构控制方法,引入了全局积分滑模面,运用Lyapunov稳定性理论导出的控制律兼顾了全局滑模的快速性和积分滑模的准确性。在解决了谐波检测环节延时的情况下,将全局积分滑模控制策略与传统的PI控制和滞环控制对比,仿真实验结果表明:全局积分滑模控制对指令电流具有更高的跟踪精度,且具有更低的电网侧电流总谐波畸变率(total harmonic distortion,THD)。展开更多
文摘Analysis of stock recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually result in a biased regression analysis. This paper presents a robust regression method, least median of squared orthogonal distance (LMD), which is insensitive to abnormal values in the dependent and independent variables in a regression analysis. Outliers that have significantly different variance from the rest of the data can be identified in a residual analysis. Then, the least squares (LS) method is applied to the SR data with defined outliers being down weighted. The application of LMD and LMD based Reweighted Least Squares (RLS) method to simulated and real fisheries SR data is explored.
基金Supported by the National Natural Science Foundation of Chinathe Science foundation of Guangxi Educational Administration
文摘Based on the least-square minimization a computationally efficient learning algorithm for the Principal Component Analysis(PCA) is derived. The dual learning rate parameters are adaptively introduced to make the proposed algorithm providing the capability of the fast convergence and high accuracy for extracting all the principal components. It is shown that all the information needed for PCA can be completely represented by the unnormalized weight vector which is updated based only on the corresponding neuron input-output product. The convergence performance of the proposed algorithm is briefly analyzed.The relation between Oja’s rule and the least squares learning rule is also established. Finally, a simulation example is given to illustrate the effectiveness of this algorithm for PCA.
基金supported by the National Natural Science Foundation of China(61803163,61991414,61873301)。
文摘In this paper,a new recursive least squares(RLS)identification algorithm with variable-direction forgetting(VDF)is proposed for multi-output systems.The objective is to enhance parameter estimation performance under non-persistent excitation.The proposed algorithm performs oblique projection decomposition of the information matrix,such that forgetting is applied only to directions where new information is received.Theoretical proofs show that even without persistent excitation,the information matrix remains lower and upper bounded,and the estimation error variance converges to be within a finite bound.Moreover,detailed analysis is made to compare with a recently reported VDF algorithm that exploits eigenvalue decomposition(VDF-ED).It is revealed that under non-persistent excitation,part of the forgotten subspace in the VDF-ED algorithm could discount old information without receiving new data,which could produce a more ill-conditioned information matrix than our proposed algorithm.Numerical simulation results demonstrate the efficacy and advantage of our proposed algorithm over this recent VDF-ED algorithm.
文摘本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN网络的输入特征为噪声信号的复数频谱(包括实部谱和虚部谱).网络结构中,采用编码模块从噪声复数频谱中提取特征,利用双解码模块分别估计网络输出的实部谱和虚部谱,采用参数共享机制和组策略以降低训练参数的数量并提高网络的学习能力和泛化能力.特别是针对风噪声,选用新的损失函数以及对训练数据进行正则化处理以提升DCRN的性能.实验结果表明,DCRN方法在仿真环境与有源降噪耳机环境下对一般噪声和风噪声都表现出良好的降噪性能和鲁棒性.
文摘针对目前地震工程研究领域在滤波方法上存在人为因素、峰值突刺、噪声干扰等方面的缺陷,结合递归最小二乘法(RLS)和循环神经网络(RNN)模型,提出了一种自适应滤波的新方法。研究分析表明,该方法通过设置自适应调节滤波器参数以及算法的自我迭代等方式进行滤波,对噪声识别能力和滤波速度上均优于美国地质调查局(United States Geological Survey,USGS)所推荐的传统滤波方法,并可有效降低滤波后对原始波形的失真损坏以及相位提前等问题。同时,运用所提自适应滤波方法将其应用于不同场地类型台站的含速度脉冲近场地震记录,进一步验证了自适应滤波方法的有效性和适用性。研究成果为地震工程领域的滤波分析提出了一种新思路和新方法,也可为地震记录处理及相关应用工作提供参考。
文摘针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积分滑模变结构控制策略。谐波检测环节采用改进的瞬时无功功率理论的id-iq法,用RLS自适应滤波器替换传统的Butterworth低通滤波器,解决了传统的Butterworth低通滤波器因延时而导致的一个基波周期(20 ms)内检测盲区问题。谐波电流跟踪环节采用全局积分滑模变结构控制方法,引入了全局积分滑模面,运用Lyapunov稳定性理论导出的控制律兼顾了全局滑模的快速性和积分滑模的准确性。在解决了谐波检测环节延时的情况下,将全局积分滑模控制策略与传统的PI控制和滞环控制对比,仿真实验结果表明:全局积分滑模控制对指令电流具有更高的跟踪精度,且具有更低的电网侧电流总谐波畸变率(total harmonic distortion,THD)。