The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) b...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.展开更多
In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the co...In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the convergence of this algorithm is theoretically discussed, and a sufficient condition for the convergence criterion of the orthogonal procedure is given. According to this condition, the recursive algorithm is convergent to model wavelet A- = (1, α1,..., αq).展开更多
采用分段线性电流密度递归卷积(P iecew ise L inear C u rren t D en sity R ecu rsive C onvo lu tion)方法将交替方向隐式时域有限差分方法(AD I-FDTD)推广应用于色散介质—等离子体中,得到了二维情况下等离子体中的迭代差分公式,为...采用分段线性电流密度递归卷积(P iecew ise L inear C u rren t D en sity R ecu rsive C onvo lu tion)方法将交替方向隐式时域有限差分方法(AD I-FDTD)推广应用于色散介质—等离子体中,得到了二维情况下等离子体中的迭代差分公式,为了验证该方法的有效性和可靠性,计算了等离子体涂敷导体圆柱的RC S和非均匀等离子体平板的反射系数,数据仿真结果表明,此算法与传统的FDTD相比,在计算结果吻合的情况下,存储量相当,计算效率更高,时间步长仅仅由计算精度来决定.展开更多
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr...Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.展开更多
基金The project was supported by the National Natural Science Foundation of China (60471002) and the Jiangxi ProvincialNatural Science Foundation (0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.
基金National Natural Science Foundation of China (No. 60471002) and the Natural Science Foundation ofJiangxi Province (No. 0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.
基金Project supported by Scientific Research Fund of Chongqing Municipal Education Commission (kj0604-16)
文摘In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the convergence of this algorithm is theoretically discussed, and a sufficient condition for the convergence criterion of the orthogonal procedure is given. According to this condition, the recursive algorithm is convergent to model wavelet A- = (1, α1,..., αq).
文摘采用分段线性电流密度递归卷积(P iecew ise L inear C u rren t D en sity R ecu rsive C onvo lu tion)方法将交替方向隐式时域有限差分方法(AD I-FDTD)推广应用于色散介质—等离子体中,得到了二维情况下等离子体中的迭代差分公式,为了验证该方法的有效性和可靠性,计算了等离子体涂敷导体圆柱的RC S和非均匀等离子体平板的反射系数,数据仿真结果表明,此算法与传统的FDTD相比,在计算结果吻合的情况下,存储量相当,计算效率更高,时间步长仅仅由计算精度来决定.
基金funded by the National Science and Technology Council,Taiwan(Grant No.NSTC 112-2121-M-039-001)by China Medical University(Grant No.CMU112-MF-79).
文摘Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.