期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Neuro-fuzzy system modeling based on automatic fuzzy clustering 被引量:1
1
作者 Yuangang TANG Fuchun SUN Zengqi SUN 《控制理论与应用(英文版)》 EI 2005年第2期121-130,共10页
A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes th... A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM), which is applied to generate fuzzy rttles automatically, and then fix on the size of the neuro-fuzzy network, by which the complexity of system design is reducesd greatly at the price of the fitting capability; 2) R.ecursive least square estimation (RLSE). It is used to update the parameters of Takagi-Sugeno model, which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network. Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method. 展开更多
关键词 Neuro-fuzzy system Automatic fuzzy C-means Gradient descent Back propagation recursive least square estimation Two-link manipulator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部