期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于NSCT、KFCM和多模型LS-SVM的红外小目标检测 被引量:7
1
作者 吴一全 尹丹艳 吴诗婳 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第8期1704-1709,共6页
为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(lea... 为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(least squares support vector machine,LS-SVM)背景预测的检测方法。首先对红外小目标图像进行NSCT并去噪,提高图像的信噪比;然后通过基于核模糊C均值聚类的多模型LS-SVM预测去噪后红外图像中的背景,用去噪后的实际图像减去背景预测图像得到残差图像;接着提出基于递归最大类间绝对差的阈值选取算法分割残差图像;最后利用目标灰度的平稳性和运动轨迹的连续性进一步检测出真实的小目标。给出了实验结果与分析,并与现有的3种基于背景预测的小目标检测方法进行了比较。结果表明该方法具有更高的检测概率和信噪比增益。 展开更多
关键词 红外小目标检测 非下采样CONTOURLET变换 核模糊C均值聚类 最小二乘支持向量机 递归最大类间绝对差
下载PDF
改进的最小类内绝对差阈值分割及快速算法 被引量:2
2
作者 张金矿 吴一全 《信号处理》 CSCD 北大核心 2010年第4期552-557,共6页
现有的最小类内绝对差阈值分割方法分割结果不够准确及计算效率过低,为此,本文提出了基于递推昆沌粒子群的改进最小类内绝对差阈值分割方法。首先引入了灰度级-梯度直方图以提高分割准确性,然后简化了阈值选取公式并推出了相应的递推算... 现有的最小类内绝对差阈值分割方法分割结果不够准确及计算效率过低,为此,本文提出了基于递推昆沌粒子群的改进最小类内绝对差阈值分割方法。首先引入了灰度级-梯度直方图以提高分割准确性,然后简化了阈值选取公式并推出了相应的递推算法,最后利用基于改进的Tent混沌粒子群算法寻找最优阈值,提出了以递推方式计算适应度,大大减少了重复计算。实验结果表明:与基于灰度级-平均灰度级最小绝对差穷举算法相比,本文方法剔除了边缘点和噪声点的影响,选取的阈值更为准确,同时,利用群体智能优化搜索过程,运算时间降低了两个数量级;与基于灰度级-梯度最大类间方差及Logistic混沌粒子群递推算法相比,本文方法基于改进的Tent混沌映射,遍历性更高,因此收敛性更好。 展开更多
关键词 图像分割 阈值选取 二维直方图 最小类内绝对差 混沌粒子群 TENT映射 递推算法
下载PDF
基于LWT和递归最小类内绝对差的红外小目标检测 被引量:1
3
作者 纪守新 吴一全 《信号处理》 CSCD 北大核心 2010年第10期1484-1488,共5页
针对存在背景干扰和噪声情况下的红外弱小目标检测问题,提出一种基于提升小波变换(LWT)和递归最小类内绝对差的检测方法。一方面先利用提升小波对原始图像进行去噪,再利用Top-hat算子抑制背景;另一方面先利用Top-hat算子抑制原始图像的... 针对存在背景干扰和噪声情况下的红外弱小目标检测问题,提出一种基于提升小波变换(LWT)和递归最小类内绝对差的检测方法。一方面先利用提升小波对原始图像进行去噪,再利用Top-hat算子抑制背景;另一方面先利用Top-hat算子抑制原始图像的背景,经提升小波去噪后,再进一步使用Top-hat算子;上述两方面得到的图像求和即为预处理图像。然后采用递归最小类内绝对差阈值选取方法分割预处理图像。针对红外小目标图像进行了大量实验,并与基于形态滤波及基于小波和形态学的红外小目标检测方法进行了比较。结果表明本文方法提高了信噪比,检测率分别提高15%和10%。 展开更多
关键词 红外弱小目标检测 提升小波变换 TOP-HAT算子 递归最小类内绝对差
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部