In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expre...In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.展开更多
Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is...Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case.展开更多
In the formal derivation and proof of binary tree algorithms,Dijkstra’s weakest predicate method is commonly used.However,the method has some drawbacks,including a time-consuming derivation process,complicated loop i...In the formal derivation and proof of binary tree algorithms,Dijkstra’s weakest predicate method is commonly used.However,the method has some drawbacks,including a time-consuming derivation process,complicated loop invariants,and the inability to generate executable programs from the specification.This paper proposes a unified strategy for the formal derivation and proof of binary tree non-recursive algorithms to address these issues.First,binary tree problem solving sequences are decomposed into two types of recursive relations based on queue and stack,and two corresponding loop invariant templates are constructed.Second,high-reliability Apla(abstract programming language)programs are derived using recursive relations and loop invariants.Finally,Apla programs are converted automatically into C++executable programs.Two types of problems with binary tree queue and stack recursive relations are used as examples,and their formal derivation and proof are performed to validate the proposed strategy’s effectiveness.This strategy improves the efficiency and correctness of binary tree algorithm derivation.展开更多
In this paper, we define a new constrained multi-component KP (cMKP) hierarchy which contains the constrained KP (cKP) hierarchy as a special case. We derive the recursion operator of the constrained multi-compone...In this paper, we define a new constrained multi-component KP (cMKP) hierarchy which contains the constrained KP (cKP) hierarchy as a special case. We derive the recursion operator of the constrained multi-component KP hierarchy. As a special example, we also give the recursion operator of the constrained two-component KP hierarchy.展开更多
We propose an algorithm to derive tautological relations from Pixton relations. We carry out this algorithm explicitly to derive some results in genus 0, 1, 2, 3 and analyze the possibility to generalize to higher gen...We propose an algorithm to derive tautological relations from Pixton relations. We carry out this algorithm explicitly to derive some results in genus 0, 1, 2, 3 and analyze the possibility to generalize to higher genera. As an application, some results about reconstruction of Gromov–Witten invariants can be derived.展开更多
This article provides an introduction to on-shell recursion relations for calculations of tree-level amplitudes. Starting with the basics, such as spinor notations and color decompositions, we ex- pose analytic proper...This article provides an introduction to on-shell recursion relations for calculations of tree-level amplitudes. Starting with the basics, such as spinor notations and color decompositions, we ex- pose analytic properties of gauge-boson amplitudes, BCFW-deformations, the large z-behavior of amplitudes, and on-shell recursion relations of gluons. We discuss further developments of on-shell recursion relations, including generalization to other quantum field theories, supersymmetric theo- ties in particular, recursion relations for off-shell currents, recursion relation with nonzero boundary contributions, bonus relations, relations for rational parts of one-loop amplitudes, recursion relations in 3D and a proof of CSW rules. Finally, we present samples of applications, including solutions of split helicity amplitudes and of Af = 4 SYM theories, consequences of consistent conditions under re- cursion relation, Kleiss-Kuijf (KK) and Bern-Carrasco-Johansson (BCJ) relations for color-ordered gluon tree amplitudes, Kawai-Lewellen-Tye (KLT) relations.展开更多
The study of the moduli space plays an important role in classical enumerative geometry and its interaction with string theory in physics. Given X=[P1/Zr] and let x' = ([0]a , [∞]b) the 2-tuple of twisted sectors ...The study of the moduli space plays an important role in classical enumerative geometry and its interaction with string theory in physics. Given X=[P1/Zr] and let x' = ([0]a , [∞]b) the 2-tuple of twisted sectors on X , we construct in this paper two different compactifications of the moduli space M0,2(X, d[P1/Zr], x'): Nonlinear Sigma Model Mx'd and Linear Sigma Model Nx'd . Relations between Mx'd and Nx'd are studied and a new gluing recursive relation on Nx'd is derived from Mx'd due to virtual localization formula.展开更多
It is proved that a linearly recursive sequence of n indices over field F (n≥1) is automatically a product of n linearly recursive sequences of 1-index over F by the theory of Hopf algebras.By the way, the correspond...It is proved that a linearly recursive sequence of n indices over field F (n≥1) is automatically a product of n linearly recursive sequences of 1-index over F by the theory of Hopf algebras.By the way, the correspondence between the set of linearly recursive sequences of 1-index and F[X]° is generalized to the case of n-index.展开更多
In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square int...In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square integrable basis. Here, we show how to reconstruct the potential function so that a correspondence with the standard formulation could be established. However, the correspondence places restriction on the kinematics of such problems.展开更多
By further examining the symmetry of external momenta and masses in Feynman integrals, we fulfilled the method proposed by Battistel and Dallabona, and showed that recursion relations in this method can be applied to ...By further examining the symmetry of external momenta and masses in Feynman integrals, we fulfilled the method proposed by Battistel and Dallabona, and showed that recursion relations in this method can be applied to simplify Feynman integrals directly.展开更多
The present work is much motivated by finding an explicit way in the construction of the Jack symmetric function,which is the spectrum generating function for the Calogero-Sutherland (CS) model.To accomplish this work...The present work is much motivated by finding an explicit way in the construction of the Jack symmetric function,which is the spectrum generating function for the Calogero-Sutherland (CS) model.To accomplish this work,the hidden Virasoro structure in the CS model is much explored.In particular,we found that the Virasoro singular vectors form a skew hierarchy in the CS model.Literally,skew is analogous to coset,but here specifically refer to the operation on the Young tableaux.In fact,based on the construction of the Virasoro singular vectors,this hierarchical structure can be used to give a complete construction of the CS states,i.e.the Jack symmetric functions,recursively.The construction is given both in operator formalism as well as in integral representation.This new integral representation for the Jack symmetric functions may shed some insights on the spectrum constructions for the other integrable systems.展开更多
We obtain the instanton correction recursion relations for the low energy effective prepotential in pure Ν = 2SU(n) supersymmetric Yang-Mills gauge theory from Whitham hierarchy and Seiberg-Witten/Whitham equations. ...We obtain the instanton correction recursion relations for the low energy effective prepotential in pure Ν = 2SU(n) supersymmetric Yang-Mills gauge theory from Whitham hierarchy and Seiberg-Witten/Whitham equations. These formulae provide us a powerful tool to calculate arbitrary order instanton corrections coefficients from the perturbative contributions of the effective prepotential in Seiberg-Witten gauge theory. We apply this idea to evaluate one-and two-order instanton corrections coefficients explicitly in SU(n) case in detail through the dynamical scale parameter expressed in terms of Riemann's theta-function.展开更多
In this paper,we give a new genus-4 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds via Pixton’s relations on the moduli space of curves.As an application,we prove that Pix...In this paper,we give a new genus-4 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds via Pixton’s relations on the moduli space of curves.As an application,we prove that Pixton’s relations imply a known topological recursion relation on Mg,1 for genus g≤4.展开更多
The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is e...The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus(and minus) the vector potential.We also include pseudo-scalar potentials in the interaction.The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis,which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric.This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction.We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.展开更多
基金The first author,Mrs.Yan Hong,was partially supported by the Natural Science Foundation of Inner Mongolia(Grant No.2019MS01007)by the Science Research Fund of Inner Mongolia University for Nationalities(Grant No.NMDBY15019)by the Foun-dation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grant Nos.NJZY19157 and NJZY20119)in China。
文摘In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.
基金Project (No. 10371107) supported by the National Natural Science Foundation of China
文摘Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case.
基金Supported by the National Natural Science Foundation of China(61862033,61902162)Key Project of Science and Technology Research of Department of Education of Jiangxi Province(GJJ210307)。
文摘In the formal derivation and proof of binary tree algorithms,Dijkstra’s weakest predicate method is commonly used.However,the method has some drawbacks,including a time-consuming derivation process,complicated loop invariants,and the inability to generate executable programs from the specification.This paper proposes a unified strategy for the formal derivation and proof of binary tree non-recursive algorithms to address these issues.First,binary tree problem solving sequences are decomposed into two types of recursive relations based on queue and stack,and two corresponding loop invariant templates are constructed.Second,high-reliability Apla(abstract programming language)programs are derived using recursive relations and loop invariants.Finally,Apla programs are converted automatically into C++executable programs.Two types of problems with binary tree queue and stack recursive relations are used as examples,and their formal derivation and proof are performed to validate the proposed strategy’s effectiveness.This strategy improves the efficiency and correctness of binary tree algorithm derivation.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11571192,11671219)K.C.Wong Magna Fund in Ningbo University
文摘In this paper, we define a new constrained multi-component KP (cMKP) hierarchy which contains the constrained KP (cKP) hierarchy as a special case. We derive the recursion operator of the constrained multi-component KP hierarchy. As a special example, we also give the recursion operator of the constrained two-component KP hierarchy.
文摘We propose an algorithm to derive tautological relations from Pixton relations. We carry out this algorithm explicitly to derive some results in genus 0, 1, 2, 3 and analyze the possibility to generalize to higher genera. As an application, some results about reconstruction of Gromov–Witten invariants can be derived.
文摘This article provides an introduction to on-shell recursion relations for calculations of tree-level amplitudes. Starting with the basics, such as spinor notations and color decompositions, we ex- pose analytic properties of gauge-boson amplitudes, BCFW-deformations, the large z-behavior of amplitudes, and on-shell recursion relations of gluons. We discuss further developments of on-shell recursion relations, including generalization to other quantum field theories, supersymmetric theo- ties in particular, recursion relations for off-shell currents, recursion relation with nonzero boundary contributions, bonus relations, relations for rational parts of one-loop amplitudes, recursion relations in 3D and a proof of CSW rules. Finally, we present samples of applications, including solutions of split helicity amplitudes and of Af = 4 SYM theories, consequences of consistent conditions under re- cursion relation, Kleiss-Kuijf (KK) and Bern-Carrasco-Johansson (BCJ) relations for color-ordered gluon tree amplitudes, Kawai-Lewellen-Tye (KLT) relations.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20100181110071)National Natural Science Foundation of China (Grant No. 11071176),supported by National Natural Science Foundation of China (Grant Nos. 11071173 and 11221101)Hundred Talents Program for Young Teachers (Grant No. SWJTU12BR028)
文摘The study of the moduli space plays an important role in classical enumerative geometry and its interaction with string theory in physics. Given X=[P1/Zr] and let x' = ([0]a , [∞]b) the 2-tuple of twisted sectors on X , we construct in this paper two different compactifications of the moduli space M0,2(X, d[P1/Zr], x'): Nonlinear Sigma Model Mx'd and Linear Sigma Model Nx'd . Relations between Mx'd and Nx'd are studied and a new gluing recursive relation on Nx'd is derived from Mx'd due to virtual localization formula.
文摘It is proved that a linearly recursive sequence of n indices over field F (n≥1) is automatically a product of n linearly recursive sequences of 1-index over F by the theory of Hopf algebras.By the way, the correspondence between the set of linearly recursive sequences of 1-index and F[X]° is generalized to the case of n-index.
基金support by the Saudi Center for Theoretical Physics (SCTP) during the progress of this work
文摘In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square integrable basis. Here, we show how to reconstruct the potential function so that a correspondence with the standard formulation could be established. However, the correspondence places restriction on the kinematics of such problems.
基金Supported by National Natural Science Foundation of China(11075149,10975128)
文摘By further examining the symmetry of external momenta and masses in Feynman integrals, we fulfilled the method proposed by Battistel and Dallabona, and showed that recursion relations in this method can be applied to simplify Feynman integrals directly.
基金Supported by the Chinese Academy of Sciences Program "Frontier Topics in Mathematical Physics" (KJCX3-SYW-S03)Supported Partially by the National Natural Science Foundation of China under Grant No.11035008
文摘The present work is much motivated by finding an explicit way in the construction of the Jack symmetric function,which is the spectrum generating function for the Calogero-Sutherland (CS) model.To accomplish this work,the hidden Virasoro structure in the CS model is much explored.In particular,we found that the Virasoro singular vectors form a skew hierarchy in the CS model.Literally,skew is analogous to coset,but here specifically refer to the operation on the Young tableaux.In fact,based on the construction of the Virasoro singular vectors,this hierarchical structure can be used to give a complete construction of the CS states,i.e.the Jack symmetric functions,recursively.The construction is given both in operator formalism as well as in integral representation.This new integral representation for the Jack symmetric functions may shed some insights on the spectrum constructions for the other integrable systems.
基金Supported by the National Natural Science Foundation of China under Grant No.11271079
文摘We obtain the instanton correction recursion relations for the low energy effective prepotential in pure Ν = 2SU(n) supersymmetric Yang-Mills gauge theory from Whitham hierarchy and Seiberg-Witten/Whitham equations. These formulae provide us a powerful tool to calculate arbitrary order instanton corrections coefficients from the perturbative contributions of the effective prepotential in Seiberg-Witten gauge theory. We apply this idea to evaluate one-and two-order instanton corrections coefficients explicitly in SU(n) case in detail through the dynamical scale parameter expressed in terms of Riemann's theta-function.
基金supported by National Natural Science Foundation of China(Grant No11601279)the Fundamental Research Funds of Shandong University
文摘In this paper,we give a new genus-4 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds via Pixton’s relations on the moduli space of curves.As an application,we prove that Pixton’s relations imply a known topological recursion relation on Mg,1 for genus g≤4.
基金King Fahd University of Petroleum and Minerals (KFUPM) for their support under research grant RG1502the material support and encouragements of the Saudi Center for Theoretical Physics (SCTP)
文摘The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus(and minus) the vector potential.We also include pseudo-scalar potentials in the interaction.The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis,which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric.This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction.We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.