期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AIGCrank:A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality
1
作者 杨平乐 赵来军 +2 位作者 董晨 徐桂琼 周立欣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期724-736,共13页
The influence maximization problem in complex networks asks to identify a given size of seed spreaders set to maximize the number of expected influenced nodes at the end of the spreading process.This problem finds man... The influence maximization problem in complex networks asks to identify a given size of seed spreaders set to maximize the number of expected influenced nodes at the end of the spreading process.This problem finds many practical applications in numerous areas such as information dissemination,epidemic immunity,and viral marketing.However,most existing influence maximization algorithms are limited by the“rich-club”phenomenon and are thus unable to avoid the influence overlap of seed spreaders.This work proposes a novel adaptive algorithm based on a new gravity centrality and a recursive ranking strategy,named AIGCrank,to identify a set of influential seeds.Specifically,the gravity centrality jointly employs the neighborhood,network location and topological structure information of nodes to evaluate each node's potential of being selected as a seed.We also present a recursive ranking strategy for identifying seed nodes one-byone.Experimental results show that our algorithm competes very favorably with the state-of-the-art algorithms in terms of influence propagation and coverage redundancy of the seed set. 展开更多
关键词 influential nodes influence maximization gravity centrality recursive ranking strategy
下载PDF
Data-driven sensor placement for efficient thermal field reconstruction 被引量:1
2
作者 LI BangJun LIU HaoRan WANG RuZhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第9期1981-1994,共14页
Complete temperature field estimation from limited local measurements is widely desired in many industrial and scientific applications of thermal engineering. Since the sensor configuration dominates the reconstructio... Complete temperature field estimation from limited local measurements is widely desired in many industrial and scientific applications of thermal engineering. Since the sensor configuration dominates the reconstruction performance, some progress has been made in designing sensor placement methods. But these approaches remain to be improved in terms of both accuracy and efficiency due to the lack of comprehensive schemes and efficient optimization algorithms. In this work, we develop a datadriven sensor placement framework for thermal field reconstruction. Specifically, we first tailor the low-dimensional model from the prior thermal maps to represent the high-dimensional temperature distribution states by virtue of proper orthogonal decomposition technique. Then, on such subspace, a recursive greedy algorithm with determinant maximization as the objective function is developed to optimize the sensor placement configuration. Furthermore, we find that the same sensor configuration can be yielded faster by the standard procedures of column-pivoted QR factorization, which allows concise software implementation with readily available function packages. When the sensor locations are determined, we advocate using the databased closed-form estimator to minimize the reconstruction error. Real-time thermal monitoring on the multi-core processor is employed as the case to demonstrate the effectiveness of the proposed methods for thermal field reconstruction. Extensive evaluations are conducted on simulation or experimental datasets of three processors with different architectures. The results show that our method achieves state-of-the-art reconstruction performance while possessing the lowest computational complexity when compared with the existing methods. 展开更多
关键词 greedy methods recursive strategy QR factorization sensor placement thermal field reconstruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部