期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of Groundnut Shell Powder on the Mechanical Properties of Recycled Polyethylene and Its Biodegradability
1
作者 Mohammed Awwalu Usman Ibrahim Momohjimoh Abdulahi S. B. Gimba 《Journal of Minerals and Materials Characterization and Engineering》 2016年第3期228-240,共13页
Natural fiber reinforced composites have gained considerable attention particularly in the manufacturing industry owing to their light weight, corrosion resistance, abundance, and biodegradability. In this work, alkal... Natural fiber reinforced composites have gained considerable attention particularly in the manufacturing industry owing to their light weight, corrosion resistance, abundance, and biodegradability. In this work, alkaline treated and untreated groundnut shell powder (GSP) was used to reinforce recycled polyethylene to produce GSP-recycled polyethylene composites with improved mechanical properties and biodegradability. GSP with particle sizes of 0 - 300 μm and 300 - 600 μm was used in different proportions: 5%, 10%, 15%, 20%, 25%, and 30% wt. The fiber was immersed for 5 hours in a 10 wt% NaOH solution. Tensile and hardness test data showed an improvement in mechanical properties of the treated fiber composites. Results of water absorption test also showed that treated GSP-recycled polyethylene composites had a lower rate of water absorption than the untreated GSP-recycled polyethylene composites. Through Fourier transform infrared spectroscopy, disappearance of characteristics peaks of hemicellulose and lignin was observed. Growth of fungi on the fiber-reinforced composites was observed, which was evidence that GSP-recycled polyethylene composite was biodegradable. Finally, SEM micrographs showed uniform distribution of treated fibers in the polymer matrix;this explained the observed improvement in the mechanical properties of treated GSP-recycled polyethylene composites. 展开更多
关键词 Groundnut Shell Powder Fibers recycled polyethylene COMPOSITES Mechanical Properties BIODEGRADABILITY
下载PDF
Optimization of Process Parameter for Sawdust/Recycled Polyethylene Composites 被引量:1
2
作者 Clement U. Atuanya Chizoba M. Obele 《Journal of Minerals and Materials Characterization and Engineering》 2016年第4期270-277,共9页
In this paper, Okhuen wood sawdust and recycled polyethylene (RLDPE) were blended and then hot-pressed to produce sawdust/recycled polyethylene composite board. The optimum processing parameters for preparing the comp... In this paper, Okhuen wood sawdust and recycled polyethylene (RLDPE) were blended and then hot-pressed to produce sawdust/recycled polyethylene composite board. The optimum processing parameters for preparing the composite such as temperature, pressing time, sawdust/RLDPE content and pressure were investigated and optimized using L<sub>9</sub> (3<sup>4</sup>) Taguchi experimental design orthogonal array. The tensile strength of the various formulations was determined. The results show that those factors made different effects on the tensile strength of the composites. The optimized process conditions obtained are as follows: press time 7 min, press temperature 180°C, saw-dust/RLDPE 60:40%, press pressure 40kg/cm<sup>2</sup>. The average tensile strength of the optimized composite board was 13.991 MPa. The composite board met the standard for general purpose applications. 展开更多
关键词 Okhuen Wood recycled Low Density polyethylene Taguchi Method Tensile Properties
下载PDF
Analytical Case Study on a Dedicated Pigment in Recycling Processes of Polyethylene
3
作者 Kees Miermans Ellen Dijkman Petra Krystek 《Advances in Chemical Engineering and Science》 2020年第3期181-189,共9页
The ability to track & trace materials is a key feature in the entire chain, and it ensures circularity principles. Examples from plastic recycling show the enormous added value that analytical technology can have... The ability to track & trace materials is a key feature in the entire chain, and it ensures circularity principles. Examples from plastic recycling show the enormous added value that analytical technology can have for the circular economy. During polymer production and recycling processes, pigments can be added for different purposes;e.g. as colouring agent of the polymeric product but also as tracer for tracking process development and control in the final recycle products versus possible by-products. An analytical method for tracking the pigment Solvent Blue 15 in input materials, in intermediates as well as in recyclates was developed by tracing and quantifying an indicator metal which is copper (Cu). Therefore, suitable digestion procedures and a quantification method by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) were developed and used for measuring the polymeric digests. The method was tested on relevant samples from chemical recycling processes. The background concentrations in base/raw material are in the range of 0.05 - 0.1 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:'Verdana, Helvetica, Arial';"><span style="background-color:#FFFFFF;"><sup>-1<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></sup></span></span> Cu. The processing concentrations are in the range of 4.2 to 28 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>-1</sup></span><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></span> Cu, while the pigment starting material (polyethylene, PE) has a concentration of around 50 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>-1</sup></span><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></span> Cu. 展开更多
关键词 Cupper Pigment Solvent Blue recycled polyethylene Track & Trace High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICPMS)
下载PDF
Synthesis and Characterization of Thermoplastic Poly(Ester Amide)s Elastomer (TPEaE) Obtained from Recycled PET
4
作者 Zhi-Yu Yang Yi-Ling Chou +2 位作者 Hao-Chun Yang Chin-Wen Chen Syang-Peng Rwei 《Journal of Renewable Materials》 SCIE EI 2021年第5期867-880,共14页
A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe effic... A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe efficiently recovered and recycled into value-added products from a practical and economical point of view.The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transforminfrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature(Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducingthe amide group, and the formation of amide-ester and amide-amide hydrogen bonds increased the intermolecularchain force. The intrinsic viscosity (η) showed the tendency of increment from TPEE (0.53 dL g^(−1)) to TPEaE-5%(0.72 dL g^(−1)) due to the reinforcement of hydrogen bond and chain entanglement. 展开更多
关键词 Recycle polyethylene terephthalate(r-PET) DEPOLYMERIZATION thermalplastic poly(ester amide)s copolymer(TPEaE)
下载PDF
Mechanical and Thermal Properties of Recycled Mixed Waste Polymers Reinforced with Reclaimed Newsprint Fibres
5
作者 Peter Fajs Vesna Zepic Bogataj +2 位作者 Marko Omahen Ari Hentonnenand Carolina Penalva 《Journal of Environmental Science and Engineering(A)》 2019年第3期83-89,共7页
This study investigates the mechanical,thermal and morphological properties of rHDPE(Recycled High Density Polyethylene)and a mixture of rPE HD/LD(High and Low Density Polyethylene),both reinforced with rNP(Reclaimed ... This study investigates the mechanical,thermal and morphological properties of rHDPE(Recycled High Density Polyethylene)and a mixture of rPE HD/LD(High and Low Density Polyethylene),both reinforced with rNP(Reclaimed Newsprint Paper)fibres.To enhance the composite properties,the addition of highly grafted maleic anhydride polyethylene wax,as CA(Coupling Agent),and semi crystalline copolymer of propylene and ethylene,as IM(Impact Modifier),was included into the material formulation by a twin-screw extruder.Mechanical and morphological properties were studied on tensile test specimens,prepared by injection moulding,by tensile testing machine and SEM(Scanning Electron Microscope),respectively.Thermal properties,i.e.melting and crystallization behaviour,were investigated by DSC(Differential Scanning Calorimetry).Mechanical analysis showed that the addition of rNP in both composites increased the young modulus and significantly decreased the elongation at break.The DSC results revealed that the addition of the rNP in the rHDPE matrix led to a substantial decrease of crystallinity,which consequently affects the tensile strength of the composite(17 MPa)in contrast to the neat rHDPE(25 MPa).On the contrary,fibre addition in rPE HD/LD matrix had no specific impact on the crystallinity index,but did contribute to the increased tensile strength(26 MPa)when compared with neat rPE HD/LD(16 MPa).SEM photomicrographs of the impact fracture surfaces demonstrated a solid adhesion bond between the natural fibres and the rPE HD/LD matrix.Reclaimed newsprint fibres can thus be considered as a perspective alternative to the inorganic fillers in the rPE HD/LD composite. 展开更多
关键词 recycled high and low density polyethylene natural fibres mechanical properties DSC RECYCLING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部