In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test...In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.展开更多
Lycopene, one of the strongest natural antioxidants known and the main carotene in ripe tomato, is very important for human health. Light is well known to be one of the most important environmental stimuli influencing...Lycopene, one of the strongest natural antioxidants known and the main carotene in ripe tomato, is very important for human health. Light is well known to be one of the most important environmental stimuli influencing lycopene biosynthesis; specifically, red light induces higher lycopene content in tomato. However, whether blue light promotes lycopene synthesis remains elusive and exactly how light stimulation promotes lycopene synthesis remains unclear. We applied supplemental blue and red lighting on tomato plants at anthesis to monitor the effect of supplemental blue and red lighting on lycopene synthesis. Our results showed that supplemental blue/red lighting induced higher lycopene content in tomato fruits; furthermore, we found that the expression of key genes in the lycopene synthesis pathway was induced by supplemented blue/red light. The expression of light signaling components, such as red-light receptor phytochromes(PHYs), blue-light receptor cryptochromes(CRYs) and light interaction factors, phytochrome-interacting factors(PIFs) and ELONGATED HYPOCOTYL 5(HY5) were up-or down-regulated by blue/red lighting. Thus, blue and red light increased lycopene content in tomatoes by inducing light receptors that modulate HY5 and PIFs activation to mediate phytoene synthase 1(PSY1) gene expression. These results provide a sound theoretical basis for further elucidation of the light regulating mechanism of lycopene synthesis in tomatoes, and for instituting a new generation of technological innovations for the enhancement of lycopene accumulation in crop production.展开更多
We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,...We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,36,72,108,144 and 180 J/m2),and thereafter subjected to PAR,darkness,or red or blue light during a 2-h repair stage,each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers(CPDs),chlorophyll a(Chl a),phycoerythrin,and UV-B-absorbing mycosporinelike amino acids(MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation(36 and 72 J/m 2) promoted the growth of C. ocellatus; however,increased UV-B radiation gradually reduced the C. ocellatus growth(greater than 72 J/m2). The MAAs(palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition,photorepair was inhibited by red light,so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase,greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore,PAR,red light,and blue light play different roles during the repair processes for damage induced by UV-B radiation.展开更多
The quality of light is an important abiotic factor that affects the growth and development of photosynthetic organisms.In this study,we exposed the unicellular green alga Dunaliella salina to red(660 nm)and blue(450 ...The quality of light is an important abiotic factor that affects the growth and development of photosynthetic organisms.In this study,we exposed the unicellular green alga Dunaliella salina to red(660 nm)and blue(450 nm)light and analyzed the cell growth,total carotenoid content,and transcriptomes.The growth of D.salina was enhanced by illumination with red light,whereas blue light was not able to promote the algal growth.In contrast,the total carotenoid content increased under both red and blue light.The RNA of D.salina was sequenced and the transcriptomic response of algal cells to red and blue light was investigated.Six transcripts encoding for the blue light receptor cryptochrome were identified,and transcripts involved in the carotenoid metabolism were up-regulated under both red and blue light.Transcripts encoding for photoprotective enzymes related to the scavenging of reactive oxygen species were up-regulated under blue light.The present transcriptomic study provides a more comprehensive understanding of carotenoid biosynthesis in D.salina under different wavelengths of light.展开更多
Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato ...Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato production.However,few studies have documented the effects of red and blue light on the growth of potato plantlets revealed at the transcriptome level.The objective of this study was to determine the growth and physiological responses of potato plantlets cultured in vitro under monochromatic red(RR),monochromatic blue(BB)as well as combined red and blue(RB)LEDs using the RNA-Seq technique.In total,3150 and 814 differentially expressed genes(DEGs)were detected in potato plantlets under RR and BB,respectively,compared to RB(used as control).Compared to the control,the DEGs enriched in"photosynthesis"and"photosynthesis-antenna proteins"metabolic pathways were up-regulated and down-regulated by BB and RR,respectively,which might be responsible for the increases and decreases of maximum quantum yield(F_(v)/F_(m)),photochemical quantum yield(φ_(PSII)),photochemical quenching(q_(P))and electron transfer rate(ETR)in BB and RR,respectively.Potato plantlets exhibited dwarfed stems and extended leaves under BB,whereas elongated stems and small leaves were induced under RR.These dramatically altered plantlet phenotypes were associated with variable levels of endogenous plant hormones gibberellin(GAs),indoleacetic acid(IAA)and cytokinins(CKs),as assessed in stems and leaves of potato plantlets.In addition,monochromatic red and blue LEDs trigged the opposite expression profiles of DEGs identified in the"plant hormone signal transduction"metabolic pathway,which were closely related to the endogenous plant hormone levels in potato plantlets.Our results provide insights into the responses of potato plantlets cultured in vitro to red and blue LEDs at the transcriptomic level and may contribute to improvements in the micro-propagation of potato plantlets cultured in vitro from the light spectrum aspect.展开更多
Blue and red light are spectral wavelengths more effective for plants. The effects of different ratios of red and blue light (R/B=2, R/B=4, R/B=8, R/B=12) provided by LEDs on morphology and photosynthetic characteri...Blue and red light are spectral wavelengths more effective for plants. The effects of different ratios of red and blue light (R/B=2, R/B=4, R/B=8, R/B=12) provided by LEDs on morphology and photosynthetic characteristics of tomato seedlings were studied. The results showed that plant height, stem diameter, fresh weight, dry weight, seedling index and G value increased with the increase of R/B ratio until 8. On the contrary, SPDA value decreased with the increase of R/B ratio. Photosynthetic characteristics were measured by CO 2 assimilation ( Pn ), stomatal conductance ( gs ) and intracellular CO 2 concentration ( Ci) . Pn and gs decreased with the increase of R/B ratio. Furthermore, similar trend was investigated in photochemical quenching (qP) and electron transport rate (ETR). Results of this study suggest that compared with white LED, appropriate combination of red and blue light can enhance plant growth and photosynthetic characteristics, and the optimal blue/red ratio for tomato growth was R/B=8.展开更多
Objective:To observe the mechanism of Yinzhihuang granules, Blue light irradiation combined with Bifid Triple Viable Capsules for neonatal jaundice treatment and offer clinical help to neonatal jaundice treatment. Met...Objective:To observe the mechanism of Yinzhihuang granules, Blue light irradiation combined with Bifid Triple Viable Capsules for neonatal jaundice treatment and offer clinical help to neonatal jaundice treatment. Methods:80 children with neonatal jaundice were selected and randomly divided into groups:the observation group (40 children) and the control group (40 children). The patient in the control group were treated with blue light and the patients in the observation group were treated with Yinzhihuang granules, Blue light irradiation combined with Bifid Triple Viable Capsules. Biochemical parameters [TBA (total bile acid), TSB (serum total bilirubin), DB (Direct bilirubin) and TCB (Percutaneous jaundice index)], nerve factor [NSE (neuronspecific enolase), Aβ(βamyloid protein) and S100B (Astrocyte derived protein)] and myocardial enzyme spectrum [LDH (lactate dehydrogenase), CK (creatine kinase) and CK-MB (isoenzymes of creatine kinase)], liver function [ALT (Alanine aminotransferase) and AST (glutamic-oxalacetic transaminase)] and renal function (BUN and Cr) were detected and analyzed before and after treatment. Results:The comparison of Biochemical parameters, nerve factor and myocardial enzymes, liver function and renal function in the two groups before treatment were not statistically significant (P>0.05). Biochemical parameters (TBA, TSB, TCB and DB), nerve factor (NSE, Aβand S100B) and myocardial enzyme spectrum (LDH, CK and CK-MB), liver function (ALT and AST) and renal function [BUN (urea nitrogen) and Cr (creatinine)] in both groups after treatment significantly decreased compared with that before treatment. The changes were statistically significant (P<0.05). Biochemical parameters (TBA, TSB, TCB and DB), nerve factor (NSE, Aβand S100B) and myocardial enzyme spectrum (LDH, CK and CK-MB), liver function (ALT and AST) and renal function (BUN and Cr) in observation group after treatment decreased more significantly compared with that in control group. The difference between two groups was considered to be statistically significant (P<0.05). Conclusions:Yinzhihuang granules, Blue light irradiation combined with Bifid Triple Viable Capsules could regulate the Biochemical parameters, protect nerve function and cardiac muscle cells and improve liver and kidney function in newborns with jaundice. So it has a very important clinical significance of the treatment to neonatal jaundice.展开更多
Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light i...Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light irradiation (532 nm), both kinds of films were characterized by using UV-visible spectroscopy and atomic force microscopy (AFM). At dif- ferent irradiation times, layer-by-layer, LbL, films showed small changes in the roughness and irregular behavior, whereas spray films exhibited higher and a regular decreasing of roughness with increasing irradiation time. The higher roughness of spray films as compared with the LbL ones was attributed to different formation mechanisms of the films. The decreasing of the roughness as a function of the irradiation time (exhibited by the spray films) was associated to surface relaxation due to the interplay between photoisomerization of congo red dye and the heating of the sample during the laser light irradiation. The results suggested that the alternative spray technique is the best choose to control of roughness of the films by using light irradiation.展开更多
OBJECTIVE: To observe the clinical efficacy of Lidan Tuihuang formula combined with Peifeikang and blue light irradiation in the treatment of neonatal jaundice. METHODS: a total of 140 cases of neonatal jaundice were ...OBJECTIVE: To observe the clinical efficacy of Lidan Tuihuang formula combined with Peifeikang and blue light irradiation in the treatment of neonatal jaundice. METHODS: a total of 140 cases of neonatal jaundice were randomly divided into the observation group and the control group, with 70 cases in each group. The control group was treated with blue light irradiation and oral Bifid Lriple Viable, on the basis of conventional clinical interventions. The observation group was treated with Lidan Tuihuang formula on the basis of the control group. After 7 days of treatment, the scores of clinical symptom(skin yellowness, reduced milk volume, constipation, abdominal distension) and level of serum bilirubin before and after treatment were compared between the two groups, and the adverse reactions and clinical recurrence of the 2 groups were statistically analyzed. RESULTS: After treatment, the effective rate was 94.3% in the observation group which was significantly higher than that in the control group(77.1%)(P < 0.05). The degree of yellowing of the skin, the reduction of the amount of milk, the concentration of constipation and the distension of bloating were all significantly reduced in the 2 groups after treatment(P < 0.05), and the improvement of the above indexes in the observation group was significantly better than that in the control group(P < 0.05). The level of serum bilirubin was significantly lower in the 2 groups after treatment and even for 2 weeks after treatment(P < 0.05). The improvement level of serum bilirubin in the observation group after treatment and even for 2 weeks after treatment were significantly better than that in the control group(P < 0.05). The recurrence rate in the observation group was 8.7%, which was significantly lower than that in the control group 22.2 %(P < 0.05); No serious adverse reactions occurred in both groups. CONCLUSION: The combination of Lidan Tuihuang Formular, Bifid Lriple Viable, blue light irradiation for neonatal jaundice can rapidly improve the clinical symptoms of children, reduce the level of serum bilirubin and shorten the treatment time, with no obvious adverse reactions and high clinical safety.展开更多
The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showe...The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showed that the chlorophyll content,maximal photochemical efficiency of PSⅡ(Fv/Fm), Fm/Fo, amount of inactive PSⅡreactioncenters (Fi-Fo) and rate of QA reduction were positively correlated with the red-light/blue-light ratios, but the chlorophyll (a/b) ratios were negatively correlated withthem. Carotenoid content of the leaves was maximum under the blue film, than under greenfilm, red film, white film and yellow film, and negatively correlated with the red/far-red ratios. The apparent quantum yield (AQY), photorespiratory rate (Pr) and carboxylationefficiency (CE) were also strongly affected by light quality. The photosynthetic rate(Pn) in strawberry leaves under green film was significantly lower than under all otherfilm. Our results suggested that light quality is an essential factor regulating thedevelopment of PSⅡ, and phytochrome and an independent blue light photoreceptor,possibly a cryptochrome, can regulate photosynthetic performance.展开更多
We evaluated the effects of ultraviolet-B (UV-B) radiation and different light conditions on the repair of UV-B-induced damage in carpospores of Chondrus ocellatus Holm (Rhodophyta) in laboratory experiments. Carp...We evaluated the effects of ultraviolet-B (UV-B) radiation and different light conditions on the repair of UV-B-induced damage in carpospores of Chondrus ocellatus Holm (Rhodophyta) in laboratory experiments. Carpospores were treated daily with different doses of UV-B radiation for 48 days, when vertical branches had formed in all treatments; after each daily treatment, the carpospores were subjected to photosynthetically active radiation (PAR), darkness, red light, or blue light during a 2-h repair stage. Carpospore diameters were measured every 4 days. We measured the growth and cellular contents of cyclobutane pyrimidine dimers (CPDs), chlorophyll a, phycoerythrin, and UV-B-absorbing mycosporine-like amino acids (MAAs) in carpospores on Day 48. Low doses of UV-B radiation (36 and 72 J/m2) accelerated the growth of C. ocellatus. However, as the amount of UV-B radiation increased, the growth rate decreased and morphological changes occurred. UV-B radiation significant damaged DNA and photosynthetic pigments and induced three kind of MAAs, palythine, asterina-330, and shinorine. PAR conditions were best for repairing UV-B-induced damage. Darkness promoted the activity of the DNA dark- repair mechanism. Red light enhanced phycoerythrin synthesis but inhibited light repair of DNA. Although blue light, increased the activity of DNA photolyase, greatly improving remediation efficiency, the growth and development of C. ocellatus earpospores were slower than in other light treatments.展开更多
In plant cultivation, the number of photons is more important than the light energy from the chemical reactions that occur during photosynthesis. In addition, the blue and red photon flux (B/R) ratio is an important p...In plant cultivation, the number of photons is more important than the light energy from the chemical reactions that occur during photosynthesis. In addition, the blue and red photon flux (B/R) ratio is an important parameter for plant cultivation. Here we discuss the effect of the spectral irradiance distribution and the B/R ratio on plant cultivation. We cultivated lettuce seedlings, Lactuca sativa L. Cv. Okayama, using a light-emitting diode illumination system that can precisely control the spectral irradiance distribution and B/R ratio. The B/R ratio varied from 0.36 to 2.06 according to the intensity of the blue light when the photosynthetic photon flux density values were sufficient to ensure the 150 - 200?μmol⋅m−2⋅s−1.?High photon flux densities of blue light result in reduced plant length, plant height, and leaf area, thereby suggesting its role in the suppression of leaf growth. Therefore, we conclude that a lower photon flux of blue light (B/R Ratio) is optimal for lettuce cultivation.展开更多
Optoelectronic applications require the development of new fluorescent and efficient luminescent materials, free of toxicity, low in cost, and easy to produce. In this way the synthesis of zinc-oxide (ZnO) quantum dot...Optoelectronic applications require the development of new fluorescent and efficient luminescent materials, free of toxicity, low in cost, and easy to produce. In this way the synthesis of zinc-oxide (ZnO) quantum dots (QDs) has recently received special attention due to their good optical, electrical and chemical properties with low production costs and blue light emission. In this work ZnO QDs were successfully doped with europium in order to obtain a tunable emission luminescence from blue emission of ZnO to red emission of europium as a function of wavelength excitation. Results show an efficient blue to red tuning when the excitation wavelength was changed from 317 nm to 395 nm, respectively. This opens the possibility of having new optical devices to produce different color emission using the same material.展开更多
Light quality significantly affects photosynthetic efficiency in plants. The mechanisms for how light quality affects photosynthesis in grape is poorly understood. Therefore, to investigate the effects of different li...Light quality significantly affects photosynthetic efficiency in plants. The mechanisms for how light quality affects photosynthesis in grape is poorly understood. Therefore, to investigate the effects of different light qualities on chloroplast ultrastructure and photosynthesis efficiency, two grape cultivars ‘Italia'(slower speed of leaf senescence) and ‘Centennial Seedless'(faster speed of leaf senescence) grown under protected and delayed conditions were used. The three treatments, replicated three times, were control(no supplemental lighting), red light and blue light. Chlorophyll content, net photosynthetic rate, and the ratio of F_v/F_m significantly increased in red light relative to the control. The opposite trend was observed in blue light in the early phase of leaf senescence. At later stages, physiological indexes were gradually higher than that of control, resulting in a delay in leaf senescence. Compared to the control, red and blue light both significantly increased the chlorophyll a/b ratio. Electron microscopy showed that blue light caused severe damage to the fine structure of chloroplasts at early stages of leaf senescence, but effects at later stages of leaf senescence became less severe compared to the control. The degradation of chloroplast ultrastructure was apparently delayed in red light throughout the experimental timeframe compared to other treatments. In this experiment, ‘Italia' showed higher chlorophyll content, net photosynthetic rate, ratios of F_v/F_m, chlorophyll a/b and better preserved chloroplast ultrastructure relative to ‘Centennial Seedless', resulting in a slower rate of leaf senescence.展开更多
The persistent luminescence(PersL)dependence on the dopants and derived mechanism of trapping and de-trapping processes were investigated in Y3Al2Ga3O12(YAGG)based nanophosphor,doped with Ce^3+and/or Cr^3+.It is found...The persistent luminescence(PersL)dependence on the dopants and derived mechanism of trapping and de-trapping processes were investigated in Y3Al2Ga3O12(YAGG)based nanophosphor,doped with Ce^3+and/or Cr^3+.It is found that the presence of Cr^3+ions produce electron and hole traps and capture suitable charge after X-ray irradiation.The effect of irradiation on the carriers trapping and their pathways after excitation was studied by means of thermo luminescence technique.On the other hand,for blue light irradiation the mechanism seems to be different.In the latter case,the Ce^3+ions,having the position of energy levels in the conduction band,become sensitizers for the electrons and main emission centres for the PersL(de-trapping process goes through Ce^3+).展开更多
We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulat...We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office(CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed.This is the first demonstration, to our knowledge, of a >20 Gbit∕s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.展开更多
文摘In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.
基金supported by the National Key Research and Development Program of China (2017YFD0701500)the Teamwork Projects Funded by Guangdong Natural Science Foundation, China (S2013030012842)the Guangzhou Science & Technology Project, China (201704020058)
文摘Lycopene, one of the strongest natural antioxidants known and the main carotene in ripe tomato, is very important for human health. Light is well known to be one of the most important environmental stimuli influencing lycopene biosynthesis; specifically, red light induces higher lycopene content in tomato. However, whether blue light promotes lycopene synthesis remains elusive and exactly how light stimulation promotes lycopene synthesis remains unclear. We applied supplemental blue and red lighting on tomato plants at anthesis to monitor the effect of supplemental blue and red lighting on lycopene synthesis. Our results showed that supplemental blue/red lighting induced higher lycopene content in tomato fruits; furthermore, we found that the expression of key genes in the lycopene synthesis pathway was induced by supplemented blue/red light. The expression of light signaling components, such as red-light receptor phytochromes(PHYs), blue-light receptor cryptochromes(CRYs) and light interaction factors, phytochrome-interacting factors(PIFs) and ELONGATED HYPOCOTYL 5(HY5) were up-or down-regulated by blue/red lighting. Thus, blue and red light increased lycopene content in tomatoes by inducing light receptors that modulate HY5 and PIFs activation to mediate phytoene synthase 1(PSY1) gene expression. These results provide a sound theoretical basis for further elucidation of the light regulating mechanism of lycopene synthesis in tomatoes, and for instituting a new generation of technological innovations for the enhancement of lycopene accumulation in crop production.
基金Supported by the Program for New Century Excellent Talents in University(No.NCET-05-0597)the National Natural Science Foundation of China(No.30270258)
文摘We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,36,72,108,144 and 180 J/m2),and thereafter subjected to PAR,darkness,or red or blue light during a 2-h repair stage,each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers(CPDs),chlorophyll a(Chl a),phycoerythrin,and UV-B-absorbing mycosporinelike amino acids(MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation(36 and 72 J/m 2) promoted the growth of C. ocellatus; however,increased UV-B radiation gradually reduced the C. ocellatus growth(greater than 72 J/m2). The MAAs(palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition,photorepair was inhibited by red light,so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase,greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore,PAR,red light,and blue light play different roles during the repair processes for damage induced by UV-B radiation.
基金Supported by the National Natural Science Foundation of China(No.41506188)the China Nantong Municipal Applied Basic Research Program(No.MS12017025-2)the Tianjin Demonstration Project for Innovative Development of Marine Economy(No.BHSF2017-21)
文摘The quality of light is an important abiotic factor that affects the growth and development of photosynthetic organisms.In this study,we exposed the unicellular green alga Dunaliella salina to red(660 nm)and blue(450 nm)light and analyzed the cell growth,total carotenoid content,and transcriptomes.The growth of D.salina was enhanced by illumination with red light,whereas blue light was not able to promote the algal growth.In contrast,the total carotenoid content increased under both red and blue light.The RNA of D.salina was sequenced and the transcriptomic response of algal cells to red and blue light was investigated.Six transcripts encoding for the blue light receptor cryptochrome were identified,and transcripts involved in the carotenoid metabolism were up-regulated under both red and blue light.Transcripts encoding for photoprotective enzymes related to the scavenging of reactive oxygen species were up-regulated under blue light.The present transcriptomic study provides a more comprehensive understanding of carotenoid biosynthesis in D.salina under different wavelengths of light.
基金funded by the Scientific Research Fund of College of Science&Technology,Ningbo University for the Introduction of High-level Talents,China(RC190006)。
文摘Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato production.However,few studies have documented the effects of red and blue light on the growth of potato plantlets revealed at the transcriptome level.The objective of this study was to determine the growth and physiological responses of potato plantlets cultured in vitro under monochromatic red(RR),monochromatic blue(BB)as well as combined red and blue(RB)LEDs using the RNA-Seq technique.In total,3150 and 814 differentially expressed genes(DEGs)were detected in potato plantlets under RR and BB,respectively,compared to RB(used as control).Compared to the control,the DEGs enriched in"photosynthesis"and"photosynthesis-antenna proteins"metabolic pathways were up-regulated and down-regulated by BB and RR,respectively,which might be responsible for the increases and decreases of maximum quantum yield(F_(v)/F_(m)),photochemical quantum yield(φ_(PSII)),photochemical quenching(q_(P))and electron transfer rate(ETR)in BB and RR,respectively.Potato plantlets exhibited dwarfed stems and extended leaves under BB,whereas elongated stems and small leaves were induced under RR.These dramatically altered plantlet phenotypes were associated with variable levels of endogenous plant hormones gibberellin(GAs),indoleacetic acid(IAA)and cytokinins(CKs),as assessed in stems and leaves of potato plantlets.In addition,monochromatic red and blue LEDs trigged the opposite expression profiles of DEGs identified in the"plant hormone signal transduction"metabolic pathway,which were closely related to the endogenous plant hormone levels in potato plantlets.Our results provide insights into the responses of potato plantlets cultured in vitro to red and blue LEDs at the transcriptomic level and may contribute to improvements in the micro-propagation of potato plantlets cultured in vitro from the light spectrum aspect.
基金Supported by Shanghai Science and Technology Commission Project,China(14DZ1206303)National Key Technology R&D Program(2014BAD05B05-05)Shanghai Agriculture Applied Technology Development Program,China(Grant No.20170201)
文摘Blue and red light are spectral wavelengths more effective for plants. The effects of different ratios of red and blue light (R/B=2, R/B=4, R/B=8, R/B=12) provided by LEDs on morphology and photosynthetic characteristics of tomato seedlings were studied. The results showed that plant height, stem diameter, fresh weight, dry weight, seedling index and G value increased with the increase of R/B ratio until 8. On the contrary, SPDA value decreased with the increase of R/B ratio. Photosynthetic characteristics were measured by CO 2 assimilation ( Pn ), stomatal conductance ( gs ) and intracellular CO 2 concentration ( Ci) . Pn and gs decreased with the increase of R/B ratio. Furthermore, similar trend was investigated in photochemical quenching (qP) and electron transport rate (ETR). Results of this study suggest that compared with white LED, appropriate combination of red and blue light can enhance plant growth and photosynthetic characteristics, and the optimal blue/red ratio for tomato growth was R/B=8.
文摘Objective:To observe the mechanism of Yinzhihuang granules, Blue light irradiation combined with Bifid Triple Viable Capsules for neonatal jaundice treatment and offer clinical help to neonatal jaundice treatment. Methods:80 children with neonatal jaundice were selected and randomly divided into groups:the observation group (40 children) and the control group (40 children). The patient in the control group were treated with blue light and the patients in the observation group were treated with Yinzhihuang granules, Blue light irradiation combined with Bifid Triple Viable Capsules. Biochemical parameters [TBA (total bile acid), TSB (serum total bilirubin), DB (Direct bilirubin) and TCB (Percutaneous jaundice index)], nerve factor [NSE (neuronspecific enolase), Aβ(βamyloid protein) and S100B (Astrocyte derived protein)] and myocardial enzyme spectrum [LDH (lactate dehydrogenase), CK (creatine kinase) and CK-MB (isoenzymes of creatine kinase)], liver function [ALT (Alanine aminotransferase) and AST (glutamic-oxalacetic transaminase)] and renal function (BUN and Cr) were detected and analyzed before and after treatment. Results:The comparison of Biochemical parameters, nerve factor and myocardial enzymes, liver function and renal function in the two groups before treatment were not statistically significant (P>0.05). Biochemical parameters (TBA, TSB, TCB and DB), nerve factor (NSE, Aβand S100B) and myocardial enzyme spectrum (LDH, CK and CK-MB), liver function (ALT and AST) and renal function [BUN (urea nitrogen) and Cr (creatinine)] in both groups after treatment significantly decreased compared with that before treatment. The changes were statistically significant (P<0.05). Biochemical parameters (TBA, TSB, TCB and DB), nerve factor (NSE, Aβand S100B) and myocardial enzyme spectrum (LDH, CK and CK-MB), liver function (ALT and AST) and renal function (BUN and Cr) in observation group after treatment decreased more significantly compared with that in control group. The difference between two groups was considered to be statistically significant (P<0.05). Conclusions:Yinzhihuang granules, Blue light irradiation combined with Bifid Triple Viable Capsules could regulate the Biochemical parameters, protect nerve function and cardiac muscle cells and improve liver and kidney function in newborns with jaundice. So it has a very important clinical significance of the treatment to neonatal jaundice.
基金This work was supported by CNPq and CAPES(Brazil).R.J.da Silva and R.R.G.Maciel thank Capes(nbioNet)and CNPq for the scholarship.
文摘Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light irradiation (532 nm), both kinds of films were characterized by using UV-visible spectroscopy and atomic force microscopy (AFM). At dif- ferent irradiation times, layer-by-layer, LbL, films showed small changes in the roughness and irregular behavior, whereas spray films exhibited higher and a regular decreasing of roughness with increasing irradiation time. The higher roughness of spray films as compared with the LbL ones was attributed to different formation mechanisms of the films. The decreasing of the roughness as a function of the irradiation time (exhibited by the spray films) was associated to surface relaxation due to the interplay between photoisomerization of congo red dye and the heating of the sample during the laser light irradiation. The results suggested that the alternative spray technique is the best choose to control of roughness of the films by using light irradiation.
文摘OBJECTIVE: To observe the clinical efficacy of Lidan Tuihuang formula combined with Peifeikang and blue light irradiation in the treatment of neonatal jaundice. METHODS: a total of 140 cases of neonatal jaundice were randomly divided into the observation group and the control group, with 70 cases in each group. The control group was treated with blue light irradiation and oral Bifid Lriple Viable, on the basis of conventional clinical interventions. The observation group was treated with Lidan Tuihuang formula on the basis of the control group. After 7 days of treatment, the scores of clinical symptom(skin yellowness, reduced milk volume, constipation, abdominal distension) and level of serum bilirubin before and after treatment were compared between the two groups, and the adverse reactions and clinical recurrence of the 2 groups were statistically analyzed. RESULTS: After treatment, the effective rate was 94.3% in the observation group which was significantly higher than that in the control group(77.1%)(P < 0.05). The degree of yellowing of the skin, the reduction of the amount of milk, the concentration of constipation and the distension of bloating were all significantly reduced in the 2 groups after treatment(P < 0.05), and the improvement of the above indexes in the observation group was significantly better than that in the control group(P < 0.05). The level of serum bilirubin was significantly lower in the 2 groups after treatment and even for 2 weeks after treatment(P < 0.05). The improvement level of serum bilirubin in the observation group after treatment and even for 2 weeks after treatment were significantly better than that in the control group(P < 0.05). The recurrence rate in the observation group was 8.7%, which was significantly lower than that in the control group 22.2 %(P < 0.05); No serious adverse reactions occurred in both groups. CONCLUSION: The combination of Lidan Tuihuang Formular, Bifid Lriple Viable, blue light irradiation for neonatal jaundice can rapidly improve the clinical symptoms of children, reduce the level of serum bilirubin and shorten the treatment time, with no obvious adverse reactions and high clinical safety.
基金supported by the National Natura1 Science Foundation of China(39730340)
文摘The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showed that the chlorophyll content,maximal photochemical efficiency of PSⅡ(Fv/Fm), Fm/Fo, amount of inactive PSⅡreactioncenters (Fi-Fo) and rate of QA reduction were positively correlated with the red-light/blue-light ratios, but the chlorophyll (a/b) ratios were negatively correlated withthem. Carotenoid content of the leaves was maximum under the blue film, than under greenfilm, red film, white film and yellow film, and negatively correlated with the red/far-red ratios. The apparent quantum yield (AQY), photorespiratory rate (Pr) and carboxylationefficiency (CE) were also strongly affected by light quality. The photosynthetic rate(Pn) in strawberry leaves under green film was significantly lower than under all otherfilm. Our results suggested that light quality is an essential factor regulating thedevelopment of PSⅡ, and phytochrome and an independent blue light photoreceptor,possibly a cryptochrome, can regulate photosynthetic performance.
基金Supported by the Program for New Century Excellent Talents in University(No.NCET-05-0597)the National Natural Science Foundation of China(No.30270258)
文摘We evaluated the effects of ultraviolet-B (UV-B) radiation and different light conditions on the repair of UV-B-induced damage in carpospores of Chondrus ocellatus Holm (Rhodophyta) in laboratory experiments. Carpospores were treated daily with different doses of UV-B radiation for 48 days, when vertical branches had formed in all treatments; after each daily treatment, the carpospores were subjected to photosynthetically active radiation (PAR), darkness, red light, or blue light during a 2-h repair stage. Carpospore diameters were measured every 4 days. We measured the growth and cellular contents of cyclobutane pyrimidine dimers (CPDs), chlorophyll a, phycoerythrin, and UV-B-absorbing mycosporine-like amino acids (MAAs) in carpospores on Day 48. Low doses of UV-B radiation (36 and 72 J/m2) accelerated the growth of C. ocellatus. However, as the amount of UV-B radiation increased, the growth rate decreased and morphological changes occurred. UV-B radiation significant damaged DNA and photosynthetic pigments and induced three kind of MAAs, palythine, asterina-330, and shinorine. PAR conditions were best for repairing UV-B-induced damage. Darkness promoted the activity of the DNA dark- repair mechanism. Red light enhanced phycoerythrin synthesis but inhibited light repair of DNA. Although blue light, increased the activity of DNA photolyase, greatly improving remediation efficiency, the growth and development of C. ocellatus earpospores were slower than in other light treatments.
文摘In plant cultivation, the number of photons is more important than the light energy from the chemical reactions that occur during photosynthesis. In addition, the blue and red photon flux (B/R) ratio is an important parameter for plant cultivation. Here we discuss the effect of the spectral irradiance distribution and the B/R ratio on plant cultivation. We cultivated lettuce seedlings, Lactuca sativa L. Cv. Okayama, using a light-emitting diode illumination system that can precisely control the spectral irradiance distribution and B/R ratio. The B/R ratio varied from 0.36 to 2.06 according to the intensity of the blue light when the photosynthetic photon flux density values were sufficient to ensure the 150 - 200?μmol⋅m−2⋅s−1.?High photon flux densities of blue light result in reduced plant length, plant height, and leaf area, thereby suggesting its role in the suppression of leaf growth. Therefore, we conclude that a lower photon flux of blue light (B/R Ratio) is optimal for lettuce cultivation.
文摘Optoelectronic applications require the development of new fluorescent and efficient luminescent materials, free of toxicity, low in cost, and easy to produce. In this way the synthesis of zinc-oxide (ZnO) quantum dots (QDs) has recently received special attention due to their good optical, electrical and chemical properties with low production costs and blue light emission. In this work ZnO QDs were successfully doped with europium in order to obtain a tunable emission luminescence from blue emission of ZnO to red emission of europium as a function of wavelength excitation. Results show an efficient blue to red tuning when the excitation wavelength was changed from 317 nm to 395 nm, respectively. This opens the possibility of having new optical devices to produce different color emission using the same material.
基金supported by the grants from National Natural Science Foundation of China(No.41101573)China Agriculture Research System(nycytx-30-zp)CAAS-ASTIP-2015-RIP-04
文摘Light quality significantly affects photosynthetic efficiency in plants. The mechanisms for how light quality affects photosynthesis in grape is poorly understood. Therefore, to investigate the effects of different light qualities on chloroplast ultrastructure and photosynthesis efficiency, two grape cultivars ‘Italia'(slower speed of leaf senescence) and ‘Centennial Seedless'(faster speed of leaf senescence) grown under protected and delayed conditions were used. The three treatments, replicated three times, were control(no supplemental lighting), red light and blue light. Chlorophyll content, net photosynthetic rate, and the ratio of F_v/F_m significantly increased in red light relative to the control. The opposite trend was observed in blue light in the early phase of leaf senescence. At later stages, physiological indexes were gradually higher than that of control, resulting in a delay in leaf senescence. Compared to the control, red and blue light both significantly increased the chlorophyll a/b ratio. Electron microscopy showed that blue light caused severe damage to the fine structure of chloroplasts at early stages of leaf senescence, but effects at later stages of leaf senescence became less severe compared to the control. The degradation of chloroplast ultrastructure was apparently delayed in red light throughout the experimental timeframe compared to other treatments. In this experiment, ‘Italia' showed higher chlorophyll content, net photosynthetic rate, ratios of F_v/F_m, chlorophyll a/b and better preserved chloroplast ultrastructure relative to ‘Centennial Seedless', resulting in a slower rate of leaf senescence.
基金Project supported by the Polish National Science Centre(OPUS 11#2016/21/B/ST5/02385)
文摘The persistent luminescence(PersL)dependence on the dopants and derived mechanism of trapping and de-trapping processes were investigated in Y3Al2Ga3O12(YAGG)based nanophosphor,doped with Ce^3+and/or Cr^3+.It is found that the presence of Cr^3+ions produce electron and hole traps and capture suitable charge after X-ray irradiation.The effect of irradiation on the carriers trapping and their pathways after excitation was studied by means of thermo luminescence technique.On the other hand,for blue light irradiation the mechanism seems to be different.In the latter case,the Ce^3+ions,having the position of energy levels in the conduction band,become sensitizers for the electrons and main emission centres for the PersL(de-trapping process goes through Ce^3+).
基金Ministry of Science and Technology,Taiwan(MOST)(MOST-106-2221-E-009-105-MY3)Aim for the Top University PlanMinistry of Education(MOE),Taiwan,China
文摘We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office(CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed.This is the first demonstration, to our knowledge, of a >20 Gbit∕s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.