Agricultural sustainability for economic development is important and a complex issue throughout the world; however,it is difficult to synthetically evaluate its use in the policy making process. The objective of this...Agricultural sustainability for economic development is important and a complex issue throughout the world; however,it is difficult to synthetically evaluate its use in the policy making process. The objective of this study was to evaluate sustainable agriculture in the red soil hill region of Southeast China through a newly proposed method combining four separate sub-systems: regional population (P), resource (R), environmental (E), and socio-economic (S). This new index system was proposed to appraise synthetically the agricultural sustainability of the red soil hill region from 1988 to 1996 with a two-step method assessing: a) the agricultural sustainability in each province independently and b) the relative sustainability of each province to the whole region. The first step only provided a development trend for each province based on its original situation, while the second step provided additional information on the comparative status of each province in agricultural development to the region as a whole. Higher index scores were found for the economy and resource categories denoting improvement. However, lower scores in the environment category indicated the improvement was achieved at the cost of deteriorating ecological surroundings due to an increasing population that demanded more from the agro-ecosystem and put heavier pressures on it. Results also showed that water and soil losses in this region were the major obstacles encountered in sustainable agriculture development. The assessment results were verified when compared with results from another method. This suggested that the new assessment system was reliable and credible in evaluating agricultural sustainability on a regional scale.展开更多
There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiol...There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiology, the processes of soil fertility restoration in the surface layer (0~20 cm) under three types of land use patterns (i.e. citrus orchard, tea garden and upland) in two provinces were studied in this work. Results showed that the reclamation of eroded waste land improved most of soil properties. Soil organic matter, total N and P, available P and K, and exchangeable Ca and Mg increased, but soil total K and exchangeable Al decreased. Soil PH decreased by 0.5 unit in the pure tea plantation for 20 years. Soil reclamation increased the percentage of soil microaggregates (<0.25 mm), especially those with a diameter of 0.02~0.002 mm. Soil total porosity increased in the cultivated lands with the increase of soil aeration and capillary porosity. The number of soil microorganisms increased with reclamation caused mainly by the huge increase of the total amount of bacteria. With the cultivation, the activity of soil urease and acid phosphatase increased, but that of invertase dropped.展开更多
Landscape and quality attributes are major ecosystem characteristics closely associated with soil conservation service(SCS).However,the intrinsic mechanisms by which these two attributes influence SCS are still unclea...Landscape and quality attributes are major ecosystem characteristics closely associated with soil conservation service(SCS).However,the intrinsic mechanisms by which these two attributes influence SCS are still unclear.Therefore,this study quantitatively analyzed the landscape pattern,ecological quality,and SCS in the Lianshui River watershed(a typical soil and water loss area of red soil in southern China)and its sub-watersheds in 2019.The boosted regression tree model was used to explore the influence of 15 factors(i.e.,landscape and quality attributes)on SCS at the sub-watershed scale.According to the results,compared with the landscape attribute,the quality attribute of the watershed ecosystem could better explain the spatial heterogeneity of SCS across 66 sub-watersheds.The overall degree of influence of five quality factors on SCS reached 57.81%,with the highest being the normalized differential build-up and bare soil index(NDBSI),at 25.11%.Among 10 landscape factors,aggregation had the greatest influence on SCS,at 28.64%.The relationships between key influencing factors and SCS were nonmonotonic and non-linear,with threshold effects.For example,NDBSI values of 0.18e0.41 had a positive influence on SCS,while NDBSI values of 0.41e0.65 had a negative influence on SCS.The findings broaden our understanding of the response of SCS to changes in landscape and quality attributes at the sub-watershed scale,and could offer comprehensive support for soil erosion management in the watershed ecosystem.展开更多
基金the National Natural Science Foundation of China (No. 49631010).
文摘Agricultural sustainability for economic development is important and a complex issue throughout the world; however,it is difficult to synthetically evaluate its use in the policy making process. The objective of this study was to evaluate sustainable agriculture in the red soil hill region of Southeast China through a newly proposed method combining four separate sub-systems: regional population (P), resource (R), environmental (E), and socio-economic (S). This new index system was proposed to appraise synthetically the agricultural sustainability of the red soil hill region from 1988 to 1996 with a two-step method assessing: a) the agricultural sustainability in each province independently and b) the relative sustainability of each province to the whole region. The first step only provided a development trend for each province based on its original situation, while the second step provided additional information on the comparative status of each province in agricultural development to the region as a whole. Higher index scores were found for the economy and resource categories denoting improvement. However, lower scores in the environment category indicated the improvement was achieved at the cost of deteriorating ecological surroundings due to an increasing population that demanded more from the agro-ecosystem and put heavier pressures on it. Results also showed that water and soil losses in this region were the major obstacles encountered in sustainable agriculture development. The assessment results were verified when compared with results from another method. This suggested that the new assessment system was reliable and credible in evaluating agricultural sustainability on a regional scale.
文摘There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiology, the processes of soil fertility restoration in the surface layer (0~20 cm) under three types of land use patterns (i.e. citrus orchard, tea garden and upland) in two provinces were studied in this work. Results showed that the reclamation of eroded waste land improved most of soil properties. Soil organic matter, total N and P, available P and K, and exchangeable Ca and Mg increased, but soil total K and exchangeable Al decreased. Soil PH decreased by 0.5 unit in the pure tea plantation for 20 years. Soil reclamation increased the percentage of soil microaggregates (<0.25 mm), especially those with a diameter of 0.02~0.002 mm. Soil total porosity increased in the cultivated lands with the increase of soil aeration and capillary porosity. The number of soil microorganisms increased with reclamation caused mainly by the huge increase of the total amount of bacteria. With the cultivation, the activity of soil urease and acid phosphatase increased, but that of invertase dropped.
基金This work was supported by the Chinese Natural Science Foundation Program[grant number 31960331].
文摘Landscape and quality attributes are major ecosystem characteristics closely associated with soil conservation service(SCS).However,the intrinsic mechanisms by which these two attributes influence SCS are still unclear.Therefore,this study quantitatively analyzed the landscape pattern,ecological quality,and SCS in the Lianshui River watershed(a typical soil and water loss area of red soil in southern China)and its sub-watersheds in 2019.The boosted regression tree model was used to explore the influence of 15 factors(i.e.,landscape and quality attributes)on SCS at the sub-watershed scale.According to the results,compared with the landscape attribute,the quality attribute of the watershed ecosystem could better explain the spatial heterogeneity of SCS across 66 sub-watersheds.The overall degree of influence of five quality factors on SCS reached 57.81%,with the highest being the normalized differential build-up and bare soil index(NDBSI),at 25.11%.Among 10 landscape factors,aggregation had the greatest influence on SCS,at 28.64%.The relationships between key influencing factors and SCS were nonmonotonic and non-linear,with threshold effects.For example,NDBSI values of 0.18e0.41 had a positive influence on SCS,while NDBSI values of 0.41e0.65 had a negative influence on SCS.The findings broaden our understanding of the response of SCS to changes in landscape and quality attributes at the sub-watershed scale,and could offer comprehensive support for soil erosion management in the watershed ecosystem.