期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region 被引量:9
1
作者 LI Xianju CHEN Gang +3 位作者 LIU Jingyi CHEN Weitao CHENG Xinwen LIAO Yiwei 《Chinese Geographical Science》 SCIE CSCD 2017年第5期827-835,共9页
Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was eff... Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions. 展开更多
关键词 arid region land cover classification RapidEye red-edge band vegetation indices random forest Dunhuang Basin
下载PDF
Comparison of Vegetation Indices and Red-edge Parameters for Estimating Grassland Cover from Canopy Reflectance Data 被引量:18
2
作者 Zhan-Yu Liu Jing-Feng Huang +1 位作者 Xin-Hong Wu Yong-Ping Dong 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第3期299-306,共8页
There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the c... There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the canopy scale. In this paper, the percentage of vegetation cover was estimated from vegetation indices using Moderate Resolution Imaging Spectroradiometer (MODIS) data and red-edge parameters through the first derivative spectrum from in situ hypserspectral reflectance data. Hyperspectral reflectance measurements were made on grasslands in Inner Mongolia, China, using an Analytical Spectral Devices spectroradiometer. Vegetation indices such as the difference, simple ratio, normalized difference, renormalized difference, soil-adjusted and modified soil-adjusted vegetation indices (DVI, RVI, NDVI, RDVI, SAVI L=0.5 end MSAVI2) were calculated from the hyperspectral reflectance of various vegetation covers. The percentage of vegetation cover was estimated using an unsupervised spectral-contextual classifier automatically. Relationships between percentage of vegetation cover and various vegetation indices and red-edge parameters were compared using a linear and second-order polynomial regression. Our analysis indicated that MSAVI2 and RVI yielded more accurate estimations for a wide range of vegetation cover than other vegetation indices and red-edge parameters for the linear and second-order polynomial regression, respectively. 展开更多
关键词 GRASSLAND hypserspectral remote sensing percentage of vegetation cover red-edge parameter vegetation index
原文传递
Estimation of chlorophyll content in pepper leaves using spectral transmittance red-edge parameters
3
作者 Shuai Huang You Wu +3 位作者 Qinglan Wang Jingli Liu Qingyan Han Jianfeng Wang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第5期85-90,共6页
The objective of this work was to monitor the growth status of pepper and provide precise guidance on fertilization through non-destructive detection methods for chlorophyll content based on spectral transmittance.The... The objective of this work was to monitor the growth status of pepper and provide precise guidance on fertilization through non-destructive detection methods for chlorophyll content based on spectral transmittance.The analysis of the narrower red-edge spectral region(680-760 nm)reduced the requirements for light sources and light detection sensors,and provided a simpler and more accurate method of data acquisition for the process of developing instruments for estimating chlorophyll content in leaves.The red-edge region of spectral transmittance was demonstrated to be closely related to chlorophyll content.Regression models for estimating chlorophyll content with seven different methods were developed using the four red-edge parameters extracted from the red-edge region.The problems of multicollinearity of red-edge parameters and errors in model coefficients were solved by the ridge regression method in the process of building a multivariate regression model.The results indicated that the ridge regression method reduces the errors of the model coefficients and constant terms while improving the detection accuracy,thus the ridge regression model could estimate the leaf chlorophyll content more accurately and repeatedly. 展开更多
关键词 pepper leaf chlorophyll content red-edge parameters ridge regression
原文传递
Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data 被引量:5
4
作者 CUI Bei ZHAO Qian-jun +3 位作者 HUANG Wen-jiang SONG Xiao-yu YE Hui-chun ZHOU Xian-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第6期1230-1245,共16页
Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field manage... Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In addition,the prediction accuracy of RapidEye,Sentinel-2 and EnMAP data was improved gradually because of more number of red-edge bands and higher spectral resolution;VI regression models that contain a single or multiple red-edge bands provided more accurate predictions of LCC than those without red-edge bands,but for normalized difference vegetation index(NDVI)-,simple ratio(SR)-and chlorophyll index(CI)-like index,two red-edge bands index didn’t significantly improve the predictive accuracy of LCC than those indices with a single red-edge band.Although satellite data with higher spectral resolution and a greater number of red-edge bands marginally improve the accuracy of estimates of crop LCC,the level of this improvement remains insufficient because of higher spectral resolution,which results in a worse signal-to-noise ratio.The results of this study are helpful to accurately monitor LCC of winter wheat in large-area and provide some valuable advice for design of red-edge spectral bands of satellite sensor in future. 展开更多
关键词 LEAF CHLOROPHYLL content RapidEye Sentinel-2 EnMAP red-edge band
下载PDF
An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat 被引量:7
5
作者 ZHAO Yu WANG Jian-wen +5 位作者 CHEN Li-ping FU Yuan-yuan ZHU Hong-chun FENG Hai-kuan XU Xin-gang LI Zhen-hai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第9期2535-2551,共17页
The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome t... The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status. 展开更多
关键词 nitrogen nutrition index(NNI) critical nitrogen dilution curve standardized leaf area index determining index(s LAIDI) the red-edge chlorophyll index(CI_(red edge))
下载PDF
Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery 被引量:4
6
作者 Guomin Shao Wenting Han +5 位作者 Huihui Zhang Yi Wang Liyuan Zhang Yaxiao Niu Yu Zhang Pei Cao 《The Crop Journal》 SCIE CSCD 2022年第5期1376-1385,共10页
Estimating spatial variation in crop transpiration coefficients(CTc) and aboveground biomass(AGB)rapidly and accurately by remote sensing can facilitate precision irrigation management in semiarid regions. This study ... Estimating spatial variation in crop transpiration coefficients(CTc) and aboveground biomass(AGB)rapidly and accurately by remote sensing can facilitate precision irrigation management in semiarid regions. This study developed and assessed a novel machine learning(ML) method for estimating CTc and AGB using time-series unmanned aerial vehicle(UAV)-based multispectral vegetation indices(VIs)of maize under several irrigation treatments at the field scale. Four ML regression methods: multiple linear regression(MLR), support vector regression(SVR), random forest regression(RFR), and adaptive boosting regression(ABR), were used to address the complex relationship between CTcand VIs. AGB was then estimated using exponential, logistic, sigmoid, and linear equations because of their clear mathematical formulations based on the optimal CTcestimation model. The UAV VIs-derived CTcusing the RFR estimation model yielded the highest accuracy(R^(2)= 0.91, RMSE = 0.0526, and n RMSE = 9.07%). The normalized difference red-edge index, transformed chlorophyll absorption in reflectance index, and simple ratio contributed significantly to the RFR-based CTcmodel. The accuracy of AGB estimation using nonlinear methods was higher than that using the linear method. The exponential method yielded the highest accuracy(R^(2)= 0.76, RMSE = 282.8 g m, and n RMSE = 39.24%) in both the 2018 and 2019 growing seasons. The study confirms that AGB estimation models based on cumulative CTcperformed well under several irrigation treatments using high-resolution time-series UAV multispectral VIs and can support irrigation management with high spatial precision at a field scale. 展开更多
关键词 Crop transpiration Normalized difference red-edge index Unmanned aerial vehicles Random forest regression BIOMASS
下载PDF
Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province,China 被引量:3
7
作者 Mengyu Wang Yi Zheng +7 位作者 Chengquan Huang Ran Meng Yong Pang Wen Jia Jie Zhou Zehua Huang Linchuan Fang Feng Zhao 《Forest Ecosystems》 SCIE CSCD 2022年第3期344-356,共13页
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f... Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages. 展开更多
关键词 Tree species mapping Plantation forests red-edge features Temporal frequency of data acquisition Fusion of Landsat-8 and Sentinel-2
下载PDF
Remote sensing retrieval of winter wheat leaf area index and canopy chlorophyll density at different growth stages 被引量:1
8
作者 Naichen Xing Wenjiang Huang +4 位作者 Huichun Ye Yingying Dong Weiping Kong Yu Ren Qiaoyun Xie 《Big Earth Data》 EI 2022年第4期580-602,共23页
Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red... Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red-edge bands and the best vegetation index at different growth stages.The indices were calculated with Sentinel-2 MSI data and hyperspectral data.Their performances were validated against ground measurements using R2,RMSE,and bias.The results suggest that indices computed with hyperspectral data exhibited higher R2 than multispectral data at the late jointing stage,head emergence stage,and filling stage.Furthermore,rededge modified indices outperformed the traditional indices for both data genres.Inversion models indicated that the indices with short red-edge wavelengths showed better estimation at the early joint-ing and milk development stage,while indices with long red-edge wavelength estimate the sought variables better at the middle three stages.The results were consistent with the red-edge inflec-tion point shift at different growth stages.The best indices for Sentinel-2 LAI retrieval,Sentinel-2 CCD retrieval,hyperspectral LAI retrieval,and hyperspectral CCD retrieval at five growth stages were determined in the research.These results are beneficial to crop trait monitoring by providing references for crop biophysical and bio-chemical parameters retrieval. 展开更多
关键词 Growth stages HYPERSPECTRAL red-edge band Sentinel-2 vegetation index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部