The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution gr...The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries.展开更多
The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different condition...The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.展开更多
The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads,such as soluble reactive phosphorus(SRP)and total phosphorus(TP),as well as the main elements of s...The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads,such as soluble reactive phosphorus(SRP)and total phosphorus(TP),as well as the main elements of sediment extracts in Dianchi Lake.Several strongly reducing substances in sediments,which mainly originated from anaerobic decomposition of primary producer residues,were responsible for the lower redox potential.In a range of -400 to 200 mV raising the redox potential of sediments decreased TP and SRP in interstitial water.Redox potentials exceeding 320 mV caused increases in TP,whereas SRP maintained a relatively constant minimum level.The concentrations of Al,Fe, Ca^(2+),Mg^(2+),K^+,Na^+ and S in interstitial water were also related to the redox potential of sediments,suggesting that the mechanism for redox potential to regulate the concentration of phosphorus in interstitial water was complex.展开更多
The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type w...The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type were investigated at different experimental stages of start up, pH regulating and redox potential regulating. The experiments confirmed that butyric acid type fermentation would occur at pH > 6, the propionic acid type fermentation at pH about 5.5 with E h> -278 mV, and the ethanol type fermentation at pH < 4.5. A higher redox potential will lead to propionic acid type fermentation because propionogens are facultative anaerobic bacteria.展开更多
The relation between EH [Se(VI)/Se(IV)] and pH of soil aqueous extract in Kaschin-Beck disease region and the effects of natural redox agents, namely humic substances, MnO2 and Fe2+, on the redox property of the syste...The relation between EH [Se(VI)/Se(IV)] and pH of soil aqueous extract in Kaschin-Beck disease region and the effects of natural redox agents, namely humic substances, MnO2 and Fe2+, on the redox property of the system were studied. The results indicated that both humic acid and Fe2+ could enhance the reducibility of Se(VI) and MnO2, a limited oxidizability for Se(IV). Fe2+ showed a weak reducibility only at low pH value. The reducibilities of three sulfur-containing compounds for Se(VI) were in following order:thioglycollic acid > L-cysteine > sulfide展开更多
In this greenhouse experiment, we investigated the effects of two constant groundwater levels: 10 cm groundwater level (GW-10) and 40 cm groundwater level (GW-40) and one change groundwater level, which was 40-10-40 c...In this greenhouse experiment, we investigated the effects of two constant groundwater levels: 10 cm groundwater level (GW-10) and 40 cm groundwater level (GW-40) and one change groundwater level, which was 40-10-40 cm (GW-40-10-40) on Cadmium (Cd) uptake and seed yield of Soybean plant in Cd contaminated soils (1.57 mg·kg-1). The experimental soil layer was made with gravel layer (14 cm), non-polluted soil (15 cm) and polluted soil (25 cm). The redox potential of every soil layer was measured from sowing to harvesting. The soil layer (10 – 40 cm) of GW-10 was always in reduction condition and that of GW-40 was always in oxidation condition. First 50 days of GW 40-10-40 were in oxidation and next 50 days in reduction and final 20 days again returned in oxidation condition. Soybean seed Cd concentration was significantly highest in GW-40-10-40 (1.16 ± 0.13 mg·kg-1) and lowest in GW-40 (0.81 ± 0.12 mg·kg-1). Cd concentration of stem was found significantly higher in GW-40 (1.7 ± 0.2 mg·kg-1) than GW-10 (0.91 ± 0.08 mg·kg-1) and GW-40-10-40 (1.28 ± 0.13 mg·kg-1). There was no significant difference in root Cd concentration among these 3 treatments. Main stem height of soybean plant and 100 seed weight of GW-40 were significantly higher than those of GW-10. The result revealed that, soil redox condition is an important factor for Cd uptake in soybean plant and seed yield of soybean. This study will help to manage the farming process more appropriately with the aim of minimizing uptake of Cd and other toxic metals in grain crops.展开更多
By using 1-methyl-2-formyl-5-substituted pyrroles (1-Y), 1-methyl-2-formyl-5-substituted pyrrole phenylhydrazones (2-Y) and 1-methyl-2-formyl-5-substituted pyrrole (4-nitrophenyl)-hydrazones (3-Y) as model structures ...By using 1-methyl-2-formyl-5-substituted pyrroles (1-Y), 1-methyl-2-formyl-5-substituted pyrrole phenylhydrazones (2-Y) and 1-methyl-2-formyl-5-substituted pyrrole (4-nitrophenyl)-hydrazones (3-Y) as model structures for nitrogen-containing heterocyclic aromatic compounds, correlation analysis of their redox potential data show that the transition states (TS) of the polarographic process are mainly affected by the polar effects, but spin-delocalizatin effects also exist.展开更多
The ruminal redox potential (Eh) can reflect the microbiological activity and dynamics of fermentation in the rumen. It might be an important indicator of rumen fermentation in combination with pH. However, the rumina...The ruminal redox potential (Eh) can reflect the microbiological activity and dynamics of fermentation in the rumen. It might be an important indicator of rumen fermentation in combination with pH. However, the ruminal Eh has been rarely studied in dairy cows due to the difficulty of its measurement, and the relationship between ruminal Eh and pH is not clear. The objective of this study was to investigate the relationship between ruminal Eh and pH of dairy cows by meta-analysis of systematic measurements from different experiments. A database was constructed from 22 experiments on cannulated dairy cattle including 57 dietary treatments. The ruminal pH and Eh were measured without air contact between 0 and 8 h post-feeding. The results demonstrated a quadratic correlation between ruminal Eh and pH with a reliable within-animal variation (Eh = -1697 + 540.7 pH -47.7 pH2, nobservation = 70, nanimal = 26, P Eh, but not always to the same extent. Some of them still influenced the relationship between ruminal Eh and pH. While the mechanism of the interaction between ruminal Eh and pH remains to be elucidated, it would be interesting to associate Eh to microbial profile, ruminal VFA concentration and milk production performance in future studies.展开更多
Aqueous organic redoxflow batteries(AORFBs)have pioneered new routes for large-scale energy storage.The tunable nature of redox-active organic molecules provides a robust foundation for creating innovative AORFBs with ...Aqueous organic redoxflow batteries(AORFBs)have pioneered new routes for large-scale energy storage.The tunable nature of redox-active organic molecules provides a robust foundation for creating innovative AORFBs with exceptional performance.Molecular engineering endows various organic molecules with considerable advantages in solubility,stability,and redox potential.Advanced characterizations have enabled a comprehensive understanding of the redox reaction and degradation mechanisms of these organic molecules.Computational chemistry and machine learning have guided the development of new organic molecules.The practical application of AORFBs will depend on the complementary efforts of multiple parties.This paper consolidates the current design principles of molecular engineering,degradation mechanisms,characterization techniques,and the utilization of computational chemistry.It also offers perspectives and forecasts the necessary attributes and strategic efforts for the next-generation AORFBs,aiming to provide the research community with a deeper understanding.展开更多
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe...Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.展开更多
Soil redox potential(Eh)plays an important role in the biogeochemical cycling of soil nutrients.Whereas its effect soil process and nutrients'availability under elevated atmospheric CO_(2) concentration and warmin...Soil redox potential(Eh)plays an important role in the biogeochemical cycling of soil nutrients.Whereas its effect soil process and nutrients'availability under elevated atmospheric CO_(2) concentration and warming has seldom been investigated.Thus,in this study,a field experiment was used to elucidate the effect of elevated CO_(2) concentration and warming on soil Eh,redox-sensitive elements and root radial oxygen loss(ROL).We hypothesized elevated CO_(2) and warming could alter soil Eh by promoting or inhibiting ROL.We found that soil Eh in the rhizosphere was significantly higher than that of non-rhizosphere.Elevated CO_(2) enhanced soil Eh by 11.5%,which corresponded to a significant decrease in soil Fe^(2+)and Mn^(2+)concentration.Under elevated CO_(2),the concentration of Fe^(2+)and Mn^(2+)decreased by 14.7%and 13.7%,respectively.We also found that elevated CO_(2) altered rice root aerenchyma structure and promoted rice root ROL.Under elevated CO_(2),rice root ROL increased by 79.5%and 112.2%for Yangdao 6 and Changyou 5,respectively.Warming had no effect on soil Eh and rice root ROL.While warming increased the concentration of Mn^(2+)and SO_(4)^(2-)by 4.9%and 19.3%,respectively.There was a significant interaction between elevated CO_(2) and warming on Fe^(2+)and Mn^(2+).Under elevated CO_(2),warming had no effect on the concentration of Fe^(2+)but decreased Mn^(2+)concentration significantly.Our study demonstrated that elevated atmospheric CO_(2) in the future could increase soil Eh by promoting rice root ROL,which will alter some soil nutrients'availability,such as Fe^(2+)and Mn^(2+).展开更多
This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical l...This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.展开更多
NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes aswell as in the regulation of embryonic development and aging,To fluorimetrically sssthemitochondrial redox state,Dr.Chance and c...NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes aswell as in the regulation of embryonic development and aging,To fluorimetrically sssthemitochondrial redox state,Dr.Chance and co-workers measured the fluorescence of NADH andoxidized flavoproteins(Fp)including favin-adenine-dinucleotide(FAD)and demonstrated theirratio(i.e.the redox ratio)is a sensitive indicator of the mitochondrial redox states.,The Chanceredox sca mer was built to simult aneously measure NADH and Fp in tisue at submilimeter scalein 3D using the freeze-trap protocol.This paper summarizes our recent research experience,development and new applications of the redox scanning technique in collaboration with Dr.Chance beginning in 2005.Dr.Chance initiated or actively involved in many of the projectsduring the last several years of his life.We advanced the redox scanning technigue by measuringthe nominal concentrations(in reference to the frozen solution standards)of the endogenousfuorescent analy tes,i.e.,[NADH]and[rp]to quantify the redox ratios in various biologicaltissues.The advancement has enabled us to identify an array of the redox indices as quantitativeimaging,biomarkers(including[NADH],[Fp],[Fp]/[NADH]+[Fp],[NADH]/[Fp],and theirstandard deviations)for studying some important biological questions on cancer and normaltsue metabolism.We found that the redox indices were asociated or changed with(NADH)tumorigenesis(cancer versus non-cancer of human breast tisue biopsies);(2)tumor metastaticpotential;(3)tumor glucose uptake;(4)tumor p53 stat us;(5)PI3K pathway activation in pre-malignant tissue;(6)therapeutic ffects on tumors;(7)embryonic stem cell diferentiation;(8)the heart under fasting,Together,our work demonstrated that the tisue redox indices obtainedfrom the redox scanning technique may provide usefil information about tisue met abolism and physiology status in normal and diseased tissues.The Chance redox scanner and other redoximaging techniques may have wide-ranging potential applications in many fields,such as cancer,diabetes,developmental process,mitochondrial diseases,neurodegenerative diseases,and aging.展开更多
The objective of this study was to evaluate the capacity of the live yeast (LY) Saccharomyces cerevisiae in optimizing ruminal pH and in understanding its mode of action during induced acidosis in dairy cow. Two non-l...The objective of this study was to evaluate the capacity of the live yeast (LY) Saccharomyces cerevisiae in optimizing ruminal pH and in understanding its mode of action during induced acidosis in dairy cow. Two non-lactating cannulated cows were used and offered twice daily a control diet (CD) consisting of 51% corn silage and 49% concentrates or a LY diet (LYD) composed of CD supplemented with 4 g of LY per cow and per day. Measurements of pH and redox potential (Eh) were continuously made at 1 h interval during an experimental period of 9 h per day. Samples of ruminal fluid were also taken at 2 h intervals for analyses of volatile fatty acids (VFA) and lactic acid. Oxygen partial pressure (logPO2) in the ruminal milieu was calculated from the Nernst equation, using either O2-H2O or lactate-propionate redox couples. The results showed an increase of 0.2 unit in ruminal pH when LYD was fed, which was accompanied by a mean difference in Eh of -20 mV with respect to CD. The logPO2 decreased significantly by 0.8 log unit for LYD when compared to CD. Concentrations of VFA and proportion of propionate were higher with LYD (114.4 mM and 17.1% total VFA) compared to CD (102.4 mM and 15.4% total VFA). Proportion of butyrate decreased (from 15.8% to 14.2% total VFA). Lactate concentration decreased by 55% on average. It is proposed that the stabilization of ruminal pH (>6) is the outcome of the LY ability to scavenge oxygen. In doing so, it increased the reducing capacity of the milieu favoring the production of total VFA and depressing the level of lactate. The LY oxygen-scavenging ability was put forward to account for the transformation of lactate (pKa = 3.86) into propionate (pKa = 4.87) under reduced ruminal conditions.展开更多
Redox potential in the well developed tropical peat swamp in Brunei was studied for a year.Generally the redox potential measurements showed a large variation,ranging from-234 mV to 727 mV.The expected rise in redox v...Redox potential in the well developed tropical peat swamp in Brunei was studied for a year.Generally the redox potential measurements showed a large variation,ranging from-234 mV to 727 mV.The expected rise in redox values did not take place following the drop of water table during the dry months of June to September.The redox value at 100 cm depth indicated that the soil remained reduced throughout the year in spite of the lowering of water table below 150 cm in all sites during dry period.Similarly the redox values did not decrease rapidly following flooding when the water table rose to the surface.This phenomenon could be attributed to the topography of the peat dome which facilitated the fast lateral movement of water and thus promoted oxygen supply down the peat profile,though not great enough to reach the 100 cm depth.The rapid lateral flow of water in the outer Alan batu site facilitated aeration,but in the inner sites remained which was reduced because of the slower water movement.The slower initiation of the reducing condition was likely due to the presence of nitrate which has accumulated as a result of ammonium oxidation during the relatively long aerobic period.Differences in the distribution of redox potential with depth are possibly explained by the different permeability of peat affecting flow patterns and residence time of water.The nature and compactibility of the peat might have slowed the diffusion rates of O2 into the lower layer.Though the bulk density of the peat was low,the composition of the peat might influence the peat permeability and hydraulic conductivity.The tree trunks are not decomposed or large branches must have lowered permeability compared to the other peat material.展开更多
Continuous treatment with organic nitrates causes nitrate tolerance and provides evidence for a relationship between mitochondrial complex 1 activity and mitochondrial aldehyde dehydrogenase-2 (ALDH-2) with disturbanc...Continuous treatment with organic nitrates causes nitrate tolerance and provides evidence for a relationship between mitochondrial complex 1 activity and mitochondrial aldehyde dehydrogenase-2 (ALDH-2) with disturbances of the hemodynamics reaction during nitroglycerin (NTG) tolerance (NTGT). The purpose of this study was the evaluation of efficacy of original oxidized form NAD-containing drug, NADCIN<sup>®</sup>, on hemodynamic reactions, baroreflex sensitivity (BRS) and reflex control of splanchnic sympathetic nerve activity (SSNA), level of redox-potential, activity of ALDH-2 and superoxide anion generation in aortic tissue in rat model of NTGT. Five groups (7 - 9 each) of male Wistar rats, including control, acute i.v. NTG (150 mcg/kg) administration, NTG tolerance NTGT treatment with NADCIN<sup>®</sup> 8 mg/kg and methylene blue (MB, 2.5 mg/kg) were used. NTGT in rats was accompanied with the greatly attenuation of hemodynamics reaction, BRS, the decreasing of the ability to reflex control of SSNA without pronounce overexpression of endothelin-1 in vessels (aorta). In NTGT rats i.v. NTG along induced less hypotensive reactions and alterations in heart period vs single NTG treated group, more expressively decreased BRS (-34%) and reflex control of SSNA (-18%). NADCIN<sup>®</sup> significantly inhibits tolerance-inducing properties of the prolonged nitroglycerin infusion (max decrease of blood pressure response to nitroglycerin injection, % of normal controls: NTGT 51.2%, NADCIN<sup>®</sup> 91.6%, MB 55.8%). NADCIN<sup>®</sup> in NTGT rats after NTG i.v. administration increased reduced BRS (+37.8%, p < 0,05), reflex control of SSNA (+29.4%, p < 0.05) and reversed the decreasing of NAD/NADH ratio, ALDH-2 activity and decreasing in superoxide generation in thoracic aortic tissue. Thus, course treatment with NADCIN<sup>®</sup> of NTGT rats restores hemodynamics changes, BRS and SSNA throughout the increasing of redox-potential NAD/NADH and cessates the NTGT developing.展开更多
基金supported by the National Natural Science Foundation of China(Nos:51503038 and 51873037).
文摘The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries.
基金Project(2010CB630904) supported by the National Basic Research Program of ChinaProject(50621063) supported by the Chinese Science Foundation for Distinguished Group
文摘The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.
基金Project supported by the National Natural Science Foundation of China(No.40401029).
文摘The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads,such as soluble reactive phosphorus(SRP)and total phosphorus(TP),as well as the main elements of sediment extracts in Dianchi Lake.Several strongly reducing substances in sediments,which mainly originated from anaerobic decomposition of primary producer residues,were responsible for the lower redox potential.In a range of -400 to 200 mV raising the redox potential of sediments decreased TP and SRP in interstitial water.Redox potentials exceeding 320 mV caused increases in TP,whereas SRP maintained a relatively constant minimum level.The concentrations of Al,Fe, Ca^(2+),Mg^(2+),K^+,Na^+ and S in interstitial water were also related to the redox potential of sediments,suggesting that the mechanism for redox potential to regulate the concentration of phosphorus in interstitial water was complex.
文摘The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type were investigated at different experimental stages of start up, pH regulating and redox potential regulating. The experiments confirmed that butyric acid type fermentation would occur at pH > 6, the propionic acid type fermentation at pH about 5.5 with E h> -278 mV, and the ethanol type fermentation at pH < 4.5. A higher redox potential will lead to propionic acid type fermentation because propionogens are facultative anaerobic bacteria.
文摘The relation between EH [Se(VI)/Se(IV)] and pH of soil aqueous extract in Kaschin-Beck disease region and the effects of natural redox agents, namely humic substances, MnO2 and Fe2+, on the redox property of the system were studied. The results indicated that both humic acid and Fe2+ could enhance the reducibility of Se(VI) and MnO2, a limited oxidizability for Se(IV). Fe2+ showed a weak reducibility only at low pH value. The reducibilities of three sulfur-containing compounds for Se(VI) were in following order:thioglycollic acid > L-cysteine > sulfide
文摘In this greenhouse experiment, we investigated the effects of two constant groundwater levels: 10 cm groundwater level (GW-10) and 40 cm groundwater level (GW-40) and one change groundwater level, which was 40-10-40 cm (GW-40-10-40) on Cadmium (Cd) uptake and seed yield of Soybean plant in Cd contaminated soils (1.57 mg·kg-1). The experimental soil layer was made with gravel layer (14 cm), non-polluted soil (15 cm) and polluted soil (25 cm). The redox potential of every soil layer was measured from sowing to harvesting. The soil layer (10 – 40 cm) of GW-10 was always in reduction condition and that of GW-40 was always in oxidation condition. First 50 days of GW 40-10-40 were in oxidation and next 50 days in reduction and final 20 days again returned in oxidation condition. Soybean seed Cd concentration was significantly highest in GW-40-10-40 (1.16 ± 0.13 mg·kg-1) and lowest in GW-40 (0.81 ± 0.12 mg·kg-1). Cd concentration of stem was found significantly higher in GW-40 (1.7 ± 0.2 mg·kg-1) than GW-10 (0.91 ± 0.08 mg·kg-1) and GW-40-10-40 (1.28 ± 0.13 mg·kg-1). There was no significant difference in root Cd concentration among these 3 treatments. Main stem height of soybean plant and 100 seed weight of GW-40 were significantly higher than those of GW-10. The result revealed that, soil redox condition is an important factor for Cd uptake in soybean plant and seed yield of soybean. This study will help to manage the farming process more appropriately with the aim of minimizing uptake of Cd and other toxic metals in grain crops.
基金the National Natural Science Foundation of China and the China Postdoctoral Science Foundation for financial support.
文摘By using 1-methyl-2-formyl-5-substituted pyrroles (1-Y), 1-methyl-2-formyl-5-substituted pyrrole phenylhydrazones (2-Y) and 1-methyl-2-formyl-5-substituted pyrrole (4-nitrophenyl)-hydrazones (3-Y) as model structures for nitrogen-containing heterocyclic aromatic compounds, correlation analysis of their redox potential data show that the transition states (TS) of the polarographic process are mainly affected by the polar effects, but spin-delocalizatin effects also exist.
文摘The ruminal redox potential (Eh) can reflect the microbiological activity and dynamics of fermentation in the rumen. It might be an important indicator of rumen fermentation in combination with pH. However, the ruminal Eh has been rarely studied in dairy cows due to the difficulty of its measurement, and the relationship between ruminal Eh and pH is not clear. The objective of this study was to investigate the relationship between ruminal Eh and pH of dairy cows by meta-analysis of systematic measurements from different experiments. A database was constructed from 22 experiments on cannulated dairy cattle including 57 dietary treatments. The ruminal pH and Eh were measured without air contact between 0 and 8 h post-feeding. The results demonstrated a quadratic correlation between ruminal Eh and pH with a reliable within-animal variation (Eh = -1697 + 540.7 pH -47.7 pH2, nobservation = 70, nanimal = 26, P Eh, but not always to the same extent. Some of them still influenced the relationship between ruminal Eh and pH. While the mechanism of the interaction between ruminal Eh and pH remains to be elucidated, it would be interesting to associate Eh to microbial profile, ruminal VFA concentration and milk production performance in future studies.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2004214and 22350710185).
文摘Aqueous organic redoxflow batteries(AORFBs)have pioneered new routes for large-scale energy storage.The tunable nature of redox-active organic molecules provides a robust foundation for creating innovative AORFBs with exceptional performance.Molecular engineering endows various organic molecules with considerable advantages in solubility,stability,and redox potential.Advanced characterizations have enabled a comprehensive understanding of the redox reaction and degradation mechanisms of these organic molecules.Computational chemistry and machine learning have guided the development of new organic molecules.The practical application of AORFBs will depend on the complementary efforts of multiple parties.This paper consolidates the current design principles of molecular engineering,degradation mechanisms,characterization techniques,and the utilization of computational chemistry.It also offers perspectives and forecasts the necessary attributes and strategic efforts for the next-generation AORFBs,aiming to provide the research community with a deeper understanding.
基金supported by the National Natural Science Foundation of China (21825703, 21927814)the National Key R&D Program of China (2019YFA0405600, 2019YFA0706900, 2021YFA1200104, 2022YFC3400500)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0540200, XDB37040201)Plans for Major Provincial Science&Technology Projects (202303a07020004)Basic Research Program Based on Major Scientific Infrastructures,CAS (JZHKYPT-2021-05)the Youth Innovation Promotion Association,CAS (2022455)
文摘Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.
基金supported by the National Natural Science Foundation of China (No.42277328)the Sino-German Mobility Program (No.M-0105)。
文摘Soil redox potential(Eh)plays an important role in the biogeochemical cycling of soil nutrients.Whereas its effect soil process and nutrients'availability under elevated atmospheric CO_(2) concentration and warming has seldom been investigated.Thus,in this study,a field experiment was used to elucidate the effect of elevated CO_(2) concentration and warming on soil Eh,redox-sensitive elements and root radial oxygen loss(ROL).We hypothesized elevated CO_(2) and warming could alter soil Eh by promoting or inhibiting ROL.We found that soil Eh in the rhizosphere was significantly higher than that of non-rhizosphere.Elevated CO_(2) enhanced soil Eh by 11.5%,which corresponded to a significant decrease in soil Fe^(2+)and Mn^(2+)concentration.Under elevated CO_(2),the concentration of Fe^(2+)and Mn^(2+)decreased by 14.7%and 13.7%,respectively.We also found that elevated CO_(2) altered rice root aerenchyma structure and promoted rice root ROL.Under elevated CO_(2),rice root ROL increased by 79.5%and 112.2%for Yangdao 6 and Changyou 5,respectively.Warming had no effect on soil Eh and rice root ROL.While warming increased the concentration of Mn^(2+)and SO_(4)^(2-)by 4.9%and 19.3%,respectively.There was a significant interaction between elevated CO_(2) and warming on Fe^(2+)and Mn^(2+).Under elevated CO_(2),warming had no effect on the concentration of Fe^(2+)but decreased Mn^(2+)concentration significantly.Our study demonstrated that elevated atmospheric CO_(2) in the future could increase soil Eh by promoting rice root ROL,which will alter some soil nutrients'availability,such as Fe^(2+)and Mn^(2+).
基金Supported by the National Basic Research Program (2010CB630902, 2004CB619202) the National Natural Science Foundation of China (31070034, 30800011, 31260396)+1 种基金 the Knowledge Innovation Program of CAS (2AKSCX2-YW-JS401) the Reward Fund for Young Scientists of Shandong Province (2007BS08002) of China
文摘This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.
基金made possible by the financial support of National Institute of Health(R01 CA155348(L.Z.Li))。
文摘NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes aswell as in the regulation of embryonic development and aging,To fluorimetrically sssthemitochondrial redox state,Dr.Chance and co-workers measured the fluorescence of NADH andoxidized flavoproteins(Fp)including favin-adenine-dinucleotide(FAD)and demonstrated theirratio(i.e.the redox ratio)is a sensitive indicator of the mitochondrial redox states.,The Chanceredox sca mer was built to simult aneously measure NADH and Fp in tisue at submilimeter scalein 3D using the freeze-trap protocol.This paper summarizes our recent research experience,development and new applications of the redox scanning technique in collaboration with Dr.Chance beginning in 2005.Dr.Chance initiated or actively involved in many of the projectsduring the last several years of his life.We advanced the redox scanning technigue by measuringthe nominal concentrations(in reference to the frozen solution standards)of the endogenousfuorescent analy tes,i.e.,[NADH]and[rp]to quantify the redox ratios in various biologicaltissues.The advancement has enabled us to identify an array of the redox indices as quantitativeimaging,biomarkers(including[NADH],[Fp],[Fp]/[NADH]+[Fp],[NADH]/[Fp],and theirstandard deviations)for studying some important biological questions on cancer and normaltsue metabolism.We found that the redox indices were asociated or changed with(NADH)tumorigenesis(cancer versus non-cancer of human breast tisue biopsies);(2)tumor metastaticpotential;(3)tumor glucose uptake;(4)tumor p53 stat us;(5)PI3K pathway activation in pre-malignant tissue;(6)therapeutic ffects on tumors;(7)embryonic stem cell diferentiation;(8)the heart under fasting,Together,our work demonstrated that the tisue redox indices obtainedfrom the redox scanning technique may provide usefil information about tisue met abolism and physiology status in normal and diseased tissues.The Chance redox scanner and other redoximaging techniques may have wide-ranging potential applications in many fields,such as cancer,diabetes,developmental process,mitochondrial diseases,neurodegenerative diseases,and aging.
文摘The objective of this study was to evaluate the capacity of the live yeast (LY) Saccharomyces cerevisiae in optimizing ruminal pH and in understanding its mode of action during induced acidosis in dairy cow. Two non-lactating cannulated cows were used and offered twice daily a control diet (CD) consisting of 51% corn silage and 49% concentrates or a LY diet (LYD) composed of CD supplemented with 4 g of LY per cow and per day. Measurements of pH and redox potential (Eh) were continuously made at 1 h interval during an experimental period of 9 h per day. Samples of ruminal fluid were also taken at 2 h intervals for analyses of volatile fatty acids (VFA) and lactic acid. Oxygen partial pressure (logPO2) in the ruminal milieu was calculated from the Nernst equation, using either O2-H2O or lactate-propionate redox couples. The results showed an increase of 0.2 unit in ruminal pH when LYD was fed, which was accompanied by a mean difference in Eh of -20 mV with respect to CD. The logPO2 decreased significantly by 0.8 log unit for LYD when compared to CD. Concentrations of VFA and proportion of propionate were higher with LYD (114.4 mM and 17.1% total VFA) compared to CD (102.4 mM and 15.4% total VFA). Proportion of butyrate decreased (from 15.8% to 14.2% total VFA). Lactate concentration decreased by 55% on average. It is proposed that the stabilization of ruminal pH (>6) is the outcome of the LY ability to scavenge oxygen. In doing so, it increased the reducing capacity of the milieu favoring the production of total VFA and depressing the level of lactate. The LY oxygen-scavenging ability was put forward to account for the transformation of lactate (pKa = 3.86) into propionate (pKa = 4.87) under reduced ruminal conditions.
文摘Redox potential in the well developed tropical peat swamp in Brunei was studied for a year.Generally the redox potential measurements showed a large variation,ranging from-234 mV to 727 mV.The expected rise in redox values did not take place following the drop of water table during the dry months of June to September.The redox value at 100 cm depth indicated that the soil remained reduced throughout the year in spite of the lowering of water table below 150 cm in all sites during dry period.Similarly the redox values did not decrease rapidly following flooding when the water table rose to the surface.This phenomenon could be attributed to the topography of the peat dome which facilitated the fast lateral movement of water and thus promoted oxygen supply down the peat profile,though not great enough to reach the 100 cm depth.The rapid lateral flow of water in the outer Alan batu site facilitated aeration,but in the inner sites remained which was reduced because of the slower water movement.The slower initiation of the reducing condition was likely due to the presence of nitrate which has accumulated as a result of ammonium oxidation during the relatively long aerobic period.Differences in the distribution of redox potential with depth are possibly explained by the different permeability of peat affecting flow patterns and residence time of water.The nature and compactibility of the peat might have slowed the diffusion rates of O2 into the lower layer.Though the bulk density of the peat was low,the composition of the peat might influence the peat permeability and hydraulic conductivity.The tree trunks are not decomposed or large branches must have lowered permeability compared to the other peat material.
文摘Continuous treatment with organic nitrates causes nitrate tolerance and provides evidence for a relationship between mitochondrial complex 1 activity and mitochondrial aldehyde dehydrogenase-2 (ALDH-2) with disturbances of the hemodynamics reaction during nitroglycerin (NTG) tolerance (NTGT). The purpose of this study was the evaluation of efficacy of original oxidized form NAD-containing drug, NADCIN<sup>®</sup>, on hemodynamic reactions, baroreflex sensitivity (BRS) and reflex control of splanchnic sympathetic nerve activity (SSNA), level of redox-potential, activity of ALDH-2 and superoxide anion generation in aortic tissue in rat model of NTGT. Five groups (7 - 9 each) of male Wistar rats, including control, acute i.v. NTG (150 mcg/kg) administration, NTG tolerance NTGT treatment with NADCIN<sup>®</sup> 8 mg/kg and methylene blue (MB, 2.5 mg/kg) were used. NTGT in rats was accompanied with the greatly attenuation of hemodynamics reaction, BRS, the decreasing of the ability to reflex control of SSNA without pronounce overexpression of endothelin-1 in vessels (aorta). In NTGT rats i.v. NTG along induced less hypotensive reactions and alterations in heart period vs single NTG treated group, more expressively decreased BRS (-34%) and reflex control of SSNA (-18%). NADCIN<sup>®</sup> significantly inhibits tolerance-inducing properties of the prolonged nitroglycerin infusion (max decrease of blood pressure response to nitroglycerin injection, % of normal controls: NTGT 51.2%, NADCIN<sup>®</sup> 91.6%, MB 55.8%). NADCIN<sup>®</sup> in NTGT rats after NTG i.v. administration increased reduced BRS (+37.8%, p < 0,05), reflex control of SSNA (+29.4%, p < 0.05) and reversed the decreasing of NAD/NADH ratio, ALDH-2 activity and decreasing in superoxide generation in thoracic aortic tissue. Thus, course treatment with NADCIN<sup>®</sup> of NTGT rats restores hemodynamics changes, BRS and SSNA throughout the increasing of redox-potential NAD/NADH and cessates the NTGT developing.