In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovative...In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovatively addresses the joint estimation of the Direction of Departure(DOD), Direction of Arrival(DOA), and Doppler frequency for incoherent targets. We propose a novel approach that significantly reduces computational complexity by utilizing the TemporalSpatial Nested Sampling Model(TSNSM). Our methodology begins with a multi-linear mapping mechanism to efficiently eliminate unnecessary virtual Degrees of Freedom(DOFs) and reorganize the remaining ones. We then employ the Toeplitz matrix triple iteration reconstruction method, surpassing the traditional Temporal-Spatial Smoothing Window(TSSW) approach, to mitigate the single snapshot effect and reduce computational demands. We further refine the highdimensional ESPRIT algorithm for joint estimation of DOD, DOA, and Doppler frequency, eliminating the need for additional parameter pairing. Moreover, we meticulously derive the Cramér-Rao Bound(CRB) for the TSNSM. This signal model allows for a second expansion of DOFs in time and space domains, achieving high precision in target angle and Doppler frequency estimation with low computational complexity. Our adaptable algorithm is validated through simulations and is suitable for sparse array MIMO radars with various structures, ensuring higher precision in parameter estimation with less complexity burden.展开更多
In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usa...In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.展开更多
In this paper, we prove that if a c.e. Turing degree d is non-low2, then there are two left-c.e, reals β0,β1 in d, such that, if β0 is wtt-reducible to a left-c.e, real a, then β1 is not computable Lipschitz (cl-...In this paper, we prove that if a c.e. Turing degree d is non-low2, then there are two left-c.e, reals β0,β1 in d, such that, if β0 is wtt-reducible to a left-c.e, real a, then β1 is not computable Lipschitz (cl-) reducible to a. As a corollary, d contains a left-c.e, real which is not cl-reducible to any complex (wtt-complete) left-c.e, real.展开更多
基金supported in part by the National Natural Science Foundation of China(No.62071476)in part by China Postdoctoral Science Foundation(No.2022M723879)in part by the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3080)。
文摘In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovatively addresses the joint estimation of the Direction of Departure(DOD), Direction of Arrival(DOA), and Doppler frequency for incoherent targets. We propose a novel approach that significantly reduces computational complexity by utilizing the TemporalSpatial Nested Sampling Model(TSNSM). Our methodology begins with a multi-linear mapping mechanism to efficiently eliminate unnecessary virtual Degrees of Freedom(DOFs) and reorganize the remaining ones. We then employ the Toeplitz matrix triple iteration reconstruction method, surpassing the traditional Temporal-Spatial Smoothing Window(TSSW) approach, to mitigate the single snapshot effect and reduce computational demands. We further refine the highdimensional ESPRIT algorithm for joint estimation of DOD, DOA, and Doppler frequency, eliminating the need for additional parameter pairing. Moreover, we meticulously derive the Cramér-Rao Bound(CRB) for the TSNSM. This signal model allows for a second expansion of DOFs in time and space domains, achieving high precision in target angle and Doppler frequency estimation with low computational complexity. Our adaptable algorithm is validated through simulations and is suitable for sparse array MIMO radars with various structures, ensuring higher precision in parameter estimation with less complexity burden.
基金supported by the National Natural Science Foundation of China (10802028)the Major State Basic Research Development Program of China (2010CB832705)the National Science Fund for Distinguished Young Scholars (10725208)
文摘In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.
文摘In this paper, we prove that if a c.e. Turing degree d is non-low2, then there are two left-c.e, reals β0,β1 in d, such that, if β0 is wtt-reducible to a left-c.e, real a, then β1 is not computable Lipschitz (cl-) reducible to a. As a corollary, d contains a left-c.e, real which is not cl-reducible to any complex (wtt-complete) left-c.e, real.