The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of...The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of crude steel in China is produced via the energy-and carbon-intensive blast furnace–basic oxygen furnace(BF–BOF)route,which greatly relies on coking coal.In recent years,China’s steel sector has made significant progress in energy conservation and emission reduction,driven by decarbonization policies and regulations.However,due to the huge output of crude steel,the steel sector still produces 15%of the total national CO_(2) emissions.The direct reduced iron(DRI)plus scrap–electric arc furnace(EAF)process is currently considered a good alternative to the conventional route as a means of reducing CO_(2) emissions and the steel industry’s reliance on iron ore and coking coal,since the gas-based DRI plus scrap–EAF route is expected to be more promising than the coal-based one.Unfortunately,almost no DRI is produced in China,seriously restricting the development of the EAF route.Here,we highlight the challenges and pathways of the future development of DRI,with a focus on China.In the short term,replacing natural gas with coke oven gas(COG)and byproduct gas from the integrated refining and chemical sector is a more economically feasible and cleaner way to develop a gas-based route in China.As the energy revolution proceeds,using fossil fuels in combination with carbon capture,utilization,and storage(CCUS)and hydrogen will be a good alternative due to the relatively low cost.In the long term,DRI is expected to be produced using 100%hydrogen from renewable energy.Both the development of deep processing technologies and the invention of a novel binder are required to prepare high-quality pellets for direct reduction(DR),and further research on the one-step gas-based process is necessary.展开更多
The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate...The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate. The quality of the final product reaches the product standard of SC 100.26 and NC 100.24.展开更多
Dark formation of hydroxyl radical upon oxidation of reduced iron minerals plays an important role in the degradation and transformation of organic and inorganic pollutants.Herein,we compared the hydroxyl radical form...Dark formation of hydroxyl radical upon oxidation of reduced iron minerals plays an important role in the degradation and transformation of organic and inorganic pollutants.Herein,we compared the hydroxyl radical formation from various reduced iron minerals at different redox conditions.·OH production was generally observed from the oxidation of reduced iron minerals,following the order:mackinawite(FeS)>reduced nontronite(iron-bearing smectite clay)> pyrite(FeS2)> side rite(FeCO3).Structural Fe^2+ and dissolved O2 play critical roles in ·OH production from reduced iron minerals.·OH production increases with decreasing pH,and Cl^-has little effect on this process.More importantly,dissolved organic matter significantly enhances ·OH production,especially under O2 purging,highlighting the importance of this process in ambient environments.This sunlight-independent pathway in which ’OH forms during oxidation of reduced iron minerals is helpful for understanding the degradation and transformation of various inorganic and organic pollutants in the redox-fluctuation environments.展开更多
The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first t...The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS.展开更多
Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined fo...Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...展开更多
Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is rela...Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is related mainly to the activity of Iron Reducing Bacteria in the rice field’s ecosystems. In order to control the harmful effects of Iron Reducing Bacterial populations and to improve rice productivity, a pots experiment was conducted at the experimental site of the University Ouaga I Pr. Joseph KI-ZERBO. An iron toxic soil from Kou Valley (West of Burkina Faso) and two rice varieties, BOUAKE-189 and ROK-5, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were drained for 14 days (D2) and amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complexes). Control pots without drainage and fertilization (D0/NF) were prepared similarly. The kinetics of Iron Reducing Bacterial populations and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using a spectrometric method. Data obtained were analyzed in relation to drainage and fertilization mode, rice growth stage and rice yield using the Student’s t-test and XLSTAT 2014 statistical software. The experiment showed that the combined application of subsurface drainage and NPK + Urea + Ca + Mg + Zn fertilization, reduced significantly the number of IRB in the soil near rice roots for both rice varieties (p = 0.050 and p = 0.020) increased the leaf tissue tolerance to excess amounts of Fe, and rice yield.展开更多
A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw mat...A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder andα-D-glucose were ball-milled, dried and sin-tered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reac-tions in sintering and find suitable temperature for LiFePO4 formation. Scanning electron microscopy was em-ployed for the morphology of LiFePO4/C. As-prepared LiH2PO4 is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2 and H2 in ball-milling and sintering. The appro-priate temperature for LiFePO4/C synthesis is 541.3-976.7 ℃. LiFePO4/C prepared at 700 ℃ presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g^-1 at 0.1 and 1 C respectively and excellent discharge ca-pacity retention.展开更多
基金supported by the Strategic Research and Consulting Project of Chinese Academy of Engineering(2022-XY-91)the Basic Science Center Project for National Natural Science Foundation of China(72088101)the Key Project of YueLuShan Center Industrial Innovation(2023YCII0105).
文摘The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of crude steel in China is produced via the energy-and carbon-intensive blast furnace–basic oxygen furnace(BF–BOF)route,which greatly relies on coking coal.In recent years,China’s steel sector has made significant progress in energy conservation and emission reduction,driven by decarbonization policies and regulations.However,due to the huge output of crude steel,the steel sector still produces 15%of the total national CO_(2) emissions.The direct reduced iron(DRI)plus scrap–electric arc furnace(EAF)process is currently considered a good alternative to the conventional route as a means of reducing CO_(2) emissions and the steel industry’s reliance on iron ore and coking coal,since the gas-based DRI plus scrap–EAF route is expected to be more promising than the coal-based one.Unfortunately,almost no DRI is produced in China,seriously restricting the development of the EAF route.Here,we highlight the challenges and pathways of the future development of DRI,with a focus on China.In the short term,replacing natural gas with coke oven gas(COG)and byproduct gas from the integrated refining and chemical sector is a more economically feasible and cleaner way to develop a gas-based route in China.As the energy revolution proceeds,using fossil fuels in combination with carbon capture,utilization,and storage(CCUS)and hydrogen will be a good alternative due to the relatively low cost.In the long term,DRI is expected to be produced using 100%hydrogen from renewable energy.Both the development of deep processing technologies and the invention of a novel binder are required to prepare high-quality pellets for direct reduction(DR),and further research on the one-step gas-based process is necessary.
文摘The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate. The quality of the final product reaches the product standard of SC 100.26 and NC 100.24.
基金financially supported by the National Natural Science Foundation of China (No.21777178)Key Projects for Frontier Sciences of the Chinese Academy of Sciences (No.QYZDBSSWDQC018)+2 种基金the CAS Interdisciplinary Innovation Team (No. JCTD-2018-04)supports from the National Young Top-Notch Talents (No.W03070030)Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016037)
文摘Dark formation of hydroxyl radical upon oxidation of reduced iron minerals plays an important role in the degradation and transformation of organic and inorganic pollutants.Herein,we compared the hydroxyl radical formation from various reduced iron minerals at different redox conditions.·OH production was generally observed from the oxidation of reduced iron minerals,following the order:mackinawite(FeS)>reduced nontronite(iron-bearing smectite clay)> pyrite(FeS2)> side rite(FeCO3).Structural Fe^2+ and dissolved O2 play critical roles in ·OH production from reduced iron minerals.·OH production increases with decreasing pH,and Cl^-has little effect on this process.More importantly,dissolved organic matter significantly enhances ·OH production,especially under O2 purging,highlighting the importance of this process in ambient environments.This sunlight-independent pathway in which ’OH forms during oxidation of reduced iron minerals is helpful for understanding the degradation and transformation of various inorganic and organic pollutants in the redox-fluctuation environments.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No. KZCX1-YW-06-03)
文摘The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS.
文摘Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...
文摘Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is related mainly to the activity of Iron Reducing Bacteria in the rice field’s ecosystems. In order to control the harmful effects of Iron Reducing Bacterial populations and to improve rice productivity, a pots experiment was conducted at the experimental site of the University Ouaga I Pr. Joseph KI-ZERBO. An iron toxic soil from Kou Valley (West of Burkina Faso) and two rice varieties, BOUAKE-189 and ROK-5, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were drained for 14 days (D2) and amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complexes). Control pots without drainage and fertilization (D0/NF) were prepared similarly. The kinetics of Iron Reducing Bacterial populations and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using a spectrometric method. Data obtained were analyzed in relation to drainage and fertilization mode, rice growth stage and rice yield using the Student’s t-test and XLSTAT 2014 statistical software. The experiment showed that the combined application of subsurface drainage and NPK + Urea + Ca + Mg + Zn fertilization, reduced significantly the number of IRB in the soil near rice roots for both rice varieties (p = 0.050 and p = 0.020) increased the leaf tissue tolerance to excess amounts of Fe, and rice yield.
基金Supported partially by the Natural Science Foundation of Yunnan Province(2010ZC051)Analysis and Testing Foundation(2009-041)Starting Research Fund(14118245) from Kunming University of Science and Technology
文摘A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder andα-D-glucose were ball-milled, dried and sin-tered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reac-tions in sintering and find suitable temperature for LiFePO4 formation. Scanning electron microscopy was em-ployed for the morphology of LiFePO4/C. As-prepared LiH2PO4 is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2 and H2 in ball-milling and sintering. The appro-priate temperature for LiFePO4/C synthesis is 541.3-976.7 ℃. LiFePO4/C prepared at 700 ℃ presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g^-1 at 0.1 and 1 C respectively and excellent discharge ca-pacity retention.