期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
DESIGNING REDUCED-ORDER CONTROLLERS OF MIXEDSENSITIVITY PROBLEM FOR FLIGHT CONTROL SYSTEMS
1
作者 曾建平 程鹏 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第2期91-94,共4页
Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not ... Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach. 展开更多
关键词 flight control systems H control LMI reduced order controller
下载PDF
Adding-Point Strategy for Reduced-Order Hypersonic Aerothermodynamics Modeling Based on Fuzzy Clustering 被引量:6
2
作者 CHEN Xin LIU Li +1 位作者 ZHOU Sida YUE Zhenjiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期983-991,共9页
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con... Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy. 展开更多
关键词 reduced order model fuzzy clustering hypersonic aerothermodynamics adding-point strategy
下载PDF
Sliding Mode Control Design via Reduced Order Model Approach 被引量:2
3
作者 B.Bandyopadhyay Alemayehu G/Egziabher Abera +1 位作者 S.Janardhanan Victor Sreeram 《International Journal of Automation and computing》 EI 2007年第4期329-334,共6页
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g... This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface. 展开更多
关键词 Sliding mode control order reduction reduced order model higher order system optimal control.
下载PDF
Reduced order observer based identification of base isolated buildings 被引量:1
4
作者 Satish Nagarajaiah Prasad Dharap 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第2期237-244,共8页
The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not av... The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not available for identification.Additionally,the response is nonlinear due to the yielding of the lead-rubber bearings.Two new approaches are presented in this paper to solve the aforementioned problems.First,a reduced order observer is used to estimate the unmeasured states.Second,a least squares technique with time segments is developed to identify the piece-wise linear system properties.The observer is used to estimate the initial conditions needed for the time segmented identification.A series of equivalent linear system parameters are identified in different time segments.It is shown that the change in system parameters,such as frequencies and damping ratios,due to nonlinear behavior of the lead-rubber bearings,are reliably estimated using the presented technique.It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening. 展开更多
关键词 use hospital building base isolation least squares system identification time segments reduced order observer Northridge earthquake
下载PDF
UNIFORM DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED LINEAR 2ND ORDER HYPERBOLIC PROBLEM WITH ZEROTH ORDER REDUCED EQUATION
5
作者 苏煜城 林平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第4期301-313,共13页
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a... In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm. 展开更多
关键词 UNIFORM DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED LINEAR 2ND order HYPERBOLIC PROBLEM WITH ZEROTH order reduced EQUATION
下载PDF
Study on Four Disturbance Observers for FO-LTI Systems
6
作者 Songsong Cheng Shengguo Wang +2 位作者 Yiheng Wei Qing Liang Yong Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期442-450,共9页
This paper addresses the problem of designing disturbance observer for fractional order linear time invariant(FO-LTI) systems,where the disturbance includes time series expansion disturbance and sinusoidal disturbance... This paper addresses the problem of designing disturbance observer for fractional order linear time invariant(FO-LTI) systems,where the disturbance includes time series expansion disturbance and sinusoidal disturbance.On one hand,the reduced order extended state observer(ROESO) and reduced order cascade extended state observer(ROCESO) are proposed for the case that the system state can be measured directly.On the other hand,the extended state observer(ESO) and the cascade extended state observer(CESO) are presented for another case when the system state cannot be measured directly.It is shown that combination of ROCESO and CESO can achieve a highly effective observation result.In addition,the way how to tune observer parameters to ensure the stability of the observers and reduce the observation error is presented in this paper.Finally,numerical simulations are given to illustrate the effectiveness of the proposed methods. 展开更多
关键词 Fractional order linear time invariant(FO-LTI) systems disturbance observer reduced order cascade method
下载PDF
Assessment of a two-surface plasticity model for hexagonal materials 被引量:1
7
作者 R.Vigneshwaran A.A.Benzerga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4431-4444,共14页
A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as void... A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The assessment also includes microstructure evolution(rate of growth of porosity and void distortion). The ability of the two-surface model to capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations. 展开更多
关键词 HCP metals Plastic anisotropy reduced order model Void growth Void coalescence
下载PDF
Reduced Order Modeling & Controller Design for Mass Transfer in a Grain Storage System
8
作者 Paramita Guha Sunita Mishra 《International Journal of Automation and computing》 EI CSCD 2014年第4期399-403,共5页
This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity... This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity profiles from the PDE model. Hence, a discretization method is applied to obtain an equivalent ordinary differential equation model. However, after applying the discretization technique, the cost of solving the system increases as the size increases to a few thousands. It may be noted that after discretization,the degree of freedom of the system remain the same while the order increases. The large dynamic model is reduced using a proper orthogonal decomposition based technique and an equivalent model but of much reduced size is obtained. A controller based on optimal control theory is designed to obtain an input such that the output humidity reaches a desired profile and also its stability is analyzed.Numerical results are presented to show the validity of the reduced model and possible further extensions are identified. 展开更多
关键词 Grain storage system finite element method modeling reduced order modeling proper orthogonal decomposition optimal control Lyapunov stability criteria
原文传递
Reduced order model for unsteady aerodynamic performance of compressor cascade based on recursive RBF 被引量:7
9
作者 Jiawei HU Hanru LIU +2 位作者 Yan'gang WANG Weixiong CHEN Yan MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期341-351,共11页
Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performa... Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure. 展开更多
关键词 Compressor cascade Neural network Recursive radial basis function reduced order model Unsteady flow
原文传递
A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD 被引量:8
10
作者 Chen Xin Liu Li +1 位作者 Long Teng Yue Zhenjiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1328-1342,共15页
Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aim... Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency. 展开更多
关键词 Hypersonic vehicles Aerothermodynamic reduced order model(ROM) Surrogate Proper orthogonaldecomposition (POD)
原文传递
Static aeroelastic analysis including geometric nonlinearities based on reduced order model 被引量:5
11
作者 Xie Changchuan An Chao +1 位作者 Liu Yi Yang Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期638-650,共13页
This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and ... This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result. 展开更多
关键词 Aeroelasticity Finite element method Geometric nonlinearity reduced order models TRIMS
原文传递
Active Control Law Design for Flutter/LCO Suppression Based on Reduced Order Model Method 被引量:3
12
作者 Chen Gang Li Yueming Yan Guirong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第6期639-646,共8页
Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low orde... Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully. 展开更多
关键词 limit cycle oscillation aeroelasticity reduced order model active control law static output feedback
原文传递
Prediction on nonlinear mechanical performance of random particulate composites by a statistical second-order reduced multiscale approach 被引量:1
13
作者 Zhiqiang Yang Yi Sun +1 位作者 Yizhi Liu Junzhi Cui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第4期570-588,I0001,共20页
A novel statistical second-order reduced multiscale(SSRM)approach is established for nonlinear composite materials with random distribution of grains.For these composites considered in this work,the complex microstruc... A novel statistical second-order reduced multiscale(SSRM)approach is established for nonlinear composite materials with random distribution of grains.For these composites considered in this work,the complex microstructure of grains,including their shape,orientation,size,spatial distribution,volume fraction and so on,results in changing of the macroscopic mechanical properties.The first-and second-order unit cell functions based on two-scale asymptotic expressions are constructed at first.Then,the expected homogenized parameters are defined,and the nonlinear homogenization equation on global structure is established,successively.Further,an effective reduced model format for analyzing second-order nonlinear unit cell problem with less computation cost is introduced in detail.Finally,some numerical examples for the materials with varying distribution models are evaluated and compared with the data by theoretical models and experimental results.These examples illustrate that the proposed SSRM approaches are effective for predicting the macroscopic properties of the random composite materials and supply a potential application in actual engineering computation. 展开更多
关键词 SSRM algorithms reduced order homogenization HOMOGENIZATION Random composites
原文传递
A reduced order model for coupled mode cascade flutter analysis 被引量:1
14
作者 Huang HUANG Xinkai JIA +3 位作者 Jia REN Bochao CAO Dingxi WANG Xiuquan HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期176-182,共7页
A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined wi... A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined with a set of Aerodynamic Influence Coefficients(AIC).Subsequently,the aerodynamic model is encoded into the state space and then coupled with the structural dynamic equations,resulting in a ROM of the cascade aeroelasticity.The cascade flutter can be determined by solving the eigenvalues of the ROM.Bending-torsional coupled mode flutter analysis for the Standard Configuration Eleven(SC11)cascade is used to validate the proposed method. 展开更多
关键词 Aerodynamic influence coefficients Chirp signal Coupled mode flutter Eigenvalue problem reduced order model
原文传递
A Numerical Study on Hydraulic Fracturing Problems via the Proper Generalized Decomposition Method 被引量:1
15
作者 Daobing Wang Sergio Zlotnik +3 位作者 Pedro Díez Hongkui Ge Fujian Zhou Bo Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期703-720,共18页
The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were pr... The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were proposed to settle this problem,most of them still require a large amount of computer resources.Thus it is a high demand to develop more efficient numerical approaches to achieve the real-time monitoring of the fracture geometry during the hydraulic fracturing treatment.In this study,a reduced order modeling technique namely Proper Generalized Decomposition(PGD),is applied to accelerate the simulations of the transient,non-linear coupled system of hydraulic fracturing problem,to match this extremely tight response time constraint.The separability of the solution in space and time dimensions is studied for a simplified model problem.The solid and fluid equations are coupled explicitly by inverting the solid discrete problem,and a simple iterative procedure to handle the non-linear characteristic of the hydraulic fracturing problem is proposed in this work.Numeral validation illustrates that the results of PGD match well with these of standard finite element method in terms o f fracture opening and fluid pressure in the hydro-fracture.Moreover,after the off-line calculations,the numerical results can be obtained in real time. 展开更多
关键词 Hydraulic fracturing proper generalized decomposition reduced order modeling numerical simulation.
下载PDF
Development and Application of a Reduced Order Model for the Control of Self-Sustained Instabilities in Cavity Flows
16
作者 Kaushik Kumar Nagarajan Laurent Cordier Christophe Airiau 《Communications in Computational Physics》 SCIE 2013年第6期186-218,共33页
Flow around a cavity is characterized by a self-sustained mechanism in which the shear layer impinges on the downstream edge of the cavity resulting in a feedback mechanism.Direct Numerical Simulations of the flow at ... Flow around a cavity is characterized by a self-sustained mechanism in which the shear layer impinges on the downstream edge of the cavity resulting in a feedback mechanism.Direct Numerical Simulations of the flow at low Reynolds number has been carried out to get pressure and velocity fluctuations,for the case of un-actuated and multi frequency actuation.A Reduced Order Model for the isentropic compressible equations based on the method of Proper Orthogonal Decomposition has been constructed.The model has been extended to include the effect of control.The Reduced Order dynamical system shows a divergence in time integration.A method of calibration based on the minimization of a linear functional of error,to the sensitivity of the modes,is proposed.The calibrated low order model is used to design a feedback control of cavity flows based on an observer design.For the experimental implementation of the controller,a state estimate based on the observed pressure measurements is obtained through a linear stochastic estimation.Finally the obtained control is introduced into the Direct Numerical Simulation to obtain a decrease in spectra of the cavity acoustic mode. 展开更多
关键词 reduced order modelling proper orthogonal decomposition cavity flows feedback control
原文传递
ORDER REDUCED METHODS FOR QUAD-CURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS
17
作者 Weifeng Zhang Shuo Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2020年第4期565-579,共15页
Quad-curl equations with Navier type boundary conditions are studied in this paper.Stable order reduced formulations equivalent to the model problems are presented,and finite element discretizations are designed.Optim... Quad-curl equations with Navier type boundary conditions are studied in this paper.Stable order reduced formulations equivalent to the model problems are presented,and finite element discretizations are designed.Optimal convergence rates are proved. 展开更多
关键词 Quad-curl equation order reduced scheme Regularity analysis Finite element method
原文传递
Review of Proper Orthogonal Decomposition Method Applied to Computational Aeroelasticity
18
作者 HASAN Junaid Hasham 《Computer Aided Drafting,Design and Manufacturing》 2010年第1期65-77,共13页
Over the recent years there has been an increased trend in the use of Reduced Order Models (ROM) for modeling the coupled aeroelastic system. Of all the ROM models, the Proper Orthogonal Decomposition Method (POD)... Over the recent years there has been an increased trend in the use of Reduced Order Models (ROM) for modeling the coupled aeroelastic system. Of all the ROM models, the Proper Orthogonal Decomposition Method (POD) has been the most widely used, reason being the relative simplicity of implementation and the physical insight that it offers towards the physical problem. In this paper we begin by briefly recalling the recent work using POD for the computational aeroelasticity followed by the mathematical formulation. Mathematical formulation is important as it provides understanding of how POD method works. Implementation issues related to the POD method are presented next. Since POD is an empirical technique therefore, it is marred by the robustness issues as is the case with all the ROMs. In the end the variations of POD method, developed over the years are presented along with the most recent trend of using hybrid ROM. 展开更多
关键词 aeroelasticity transonic aerodynamics reduced order modeling proper orthogonal decomposition
下载PDF
NeuroPNM:Model reduction of pore network models using neural networks
19
作者 Robert Jendersie Ali Mjalled +4 位作者 Xiang Lu Lucas Reineking Abdolreza Kharaghani Martin Monnigmann Christian Lessig 《Particuology》 SCIE EI CAS CSCD 2024年第3期239-251,共13页
Reacting particle systems play an important role in many industrial applications,for example biomass drying or the manufacturing of pharmaceuticals.The numerical modeling and simulation of such systems is therefore of... Reacting particle systems play an important role in many industrial applications,for example biomass drying or the manufacturing of pharmaceuticals.The numerical modeling and simulation of such systems is therefore of great importance for an efficient,reliable,and environmentally sustainable operation of the processes.The complex thermodynamical,chemical,and flow processes that take place in the particles are a particular challenge in a simulation.Furthermore,typically a large number of particles is involved,rendering an explicit treatment of individual ones impossible in a reactor-level simulation.One approach for overcoming this challenge is to compute effective,physical parameters from single-particle,high-resolution simulations.This can be combined with model reduction methods if the dynamical behaviour of particles must be captured.Pore network models with their unrivaled resolution have thereby been used successfully as high-resolution models,for instance to obtain the macroscopic diffusion coeffcient of drying.Both parameter identification and model reduction have recently gained new impetus by the dramatic progress made in machine learning in the last decade.We report results on the use of neural networks for parameter identification and model reduction based on three-dimensional pore network models(PNM).We believe that our results provide a powerful complement to existing methodologies for reactor-level simulations with many thermally-thick particles. 展开更多
关键词 Porenetwork models Neural networks Parameter estimation reduced order model
原文传递
Fourier Collocation and Reduced Basis Methods for Fast Modeling of Compressible Flows
20
作者 Jian Yu Deep Ray Jan S.Hesthaven 《Communications in Computational Physics》 SCIE 2022年第8期595-637,共43页
A projection-based reduced order model(ROM)based on the Fourier collocation method is proposed for compressible flows.The incorporation of localized artificial viscosity model and filtering is pursued to enhance the r... A projection-based reduced order model(ROM)based on the Fourier collocation method is proposed for compressible flows.The incorporation of localized artificial viscosity model and filtering is pursued to enhance the robustness and accuracy of the ROM for shock-dominated flows.Furthermore,for Euler systems,ROMs built on the conservative and the skew-symmetric forms of the governing equation are compared.To ensure efficiency,the discrete empirical interpolation method(DEIM)is employed.An alternative reduction approach,exploring the sparsity of viscosity is also investigated for the viscous terms.A number of one-and two-dimensional benchmark cases are considered to test the performance of the proposed models.Results show that stable computations for shock-dominated cases can be achieved with ROMs built on both the conservative and the skew-symmetric forms without additional stabilization components other than the viscosity model and filtering.Under the same parameters,the skew-symmetric form shows better robustness and accuracy than its conservative counterpart,while the conservative form is superior in terms of efficiency. 展开更多
关键词 Projection-based reduced order modeling Fourier collocation artificial viscosity compressible flow
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部