Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assu...Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.展开更多
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking s...This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.展开更多
This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-d...This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.展开更多
This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information o...This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.展开更多
In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturban...In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturbances/uncertainties. To cope with these requirements, this paper proposes a novel dynamic event-triggered robust tracking control method for a onedegree of freedom(DOF) link manipulator with external disturbance and system uncertainties via a reduced-order generalized proportional-integral observer(GPIO). By only using the sampled-data position signal, a new sampled-data robust output feedback tracking controller is proposed based on a reduced-order GPIO to attenuate the undesirable influence of the external disturbance and the system uncertainties. To save the communication resources, we propose a discrete-time dynamic event-triggering mechanism(DETM), where the estimates and the control signal are transmitted and computed only when the proposed discrete-time DETM is violated. It is shown that with the proposed control method, both tracking control properties and communication properties can be significantly improved. Finally, simulation results are shown to demonstrate the feasibility and efficacy of the proposed control approach.展开更多
The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as ...The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analysis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based controls are employed, where the unmeasured state variables are estimated for practical implementations. These observer-based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic ECG signal processing devices.展开更多
This article proposes an innovative strategy to the problem of non-linear estimation of states for electrical machine systems. This method allows the estimation of variables that are difficult to access or that are si...This article proposes an innovative strategy to the problem of non-linear estimation of states for electrical machine systems. This method allows the estimation of variables that are difficult to access or that are simply impossible to measure. Thus, as compared with a full-order sliding mode observer, in order to reduce the execution time of the estimation, a reduced-order discrete-time Extended sliding mode observer is proposed for on-line estimation of rotor flux, speed and rotor resistance in an induction motor using a robust feedback linearization control. Simulations results on Matlab-Simulink environment for a 1.8 kW induction motor are presented to prove the effectiveness and high robustness of the proposed nonlinear control and observer against modeling uncertainty and measurement noise.展开更多
This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our propose...This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our proposed delay-dependent coupled LMIs criterion lies in that: ( 1 ) it can optimize one of multiple time delays with others selected properly, and at the same time, the feedback-gain and observer-gain can be obtained, respectively. (2) it is less conservative than the existing delay-independent ones in the literature. Algorithm to solve the coupled LMIs is also given. Numerical examples illustrate the effectiveness of our method. Keywords Delay-dependent criterion - Time-delay system - Multiple time-delay - Observer-based controller - Linear matrixinequality (LMI)展开更多
This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, mul...This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.展开更多
This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditi...This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditions,the authors derive less conservative criterion for the controller design and observer design.A new criterion is proposed to ensure the closed-loop system is finite-time bounded(FTB).The sufficient conditions are established to ensure the closed-loop system is H_(∞)finite-time bounded(H_(∞)FTB)in terms of matrix inequalities.The controller gains and observer gains are given.A numerical example is provided to demonstrate the effectiveness of the proposed results.展开更多
With the increasing wind power penetration in the power system,the auxiliary frequency control(AFC)of wind farm(WF)has been widely used.The traditional system frequency response(SFR)model is not suitable for the wind ...With the increasing wind power penetration in the power system,the auxiliary frequency control(AFC)of wind farm(WF)has been widely used.The traditional system frequency response(SFR)model is not suitable for the wind power generation system due to its poor accuracy and applicability.In this paper,a piecewise reduced-order frequency response(PROFR)model is proposed,and an optimized auxiliary frequency control(O-AFC)scheme of WF based on the P-ROFR model is proposed.Firstly,a full-order frequency response model considering the change in operating point of wind turbine is established to improve the applicability.In order to simplify the fullorder model,a P-ROFR model with second-order structure and high accuracy at each frequency response stage is proposed.Based on the proposed P-ROFR model,the relationship between the frequency response indexes and the auxiliary frequency controller coefficients is expressed explicitly.Then,an OAFC scheme with the derived explicit expression as the optimization objective is proposed in order to improve the frequency support capability on the premise of ensuring the full release of the rotor kinetic energy and the full use of the effect of time delay on frequency regulation.Finally,the effectiveness of the proposed P-ROFR model and the performance of the proposed OAFC scheme are verified by simulation studies.展开更多
A new kind of generalized reduced-order synchronization of different chaotic systems is proposed in this paper. It is shown that dynamical evolution of third-order oscillator can be synchronized with the canonical pro...A new kind of generalized reduced-order synchronization of different chaotic systems is proposed in this paper. It is shown that dynamical evolution of third-order oscillator can be synchronized with the canonical projection of a fourth-order chaotic system generated through nonsingular states transformation from a cell neural net chaotic system. In this sense, it is said that generalized synchronization is achieved in reduced-order. The synchronization discussed here expands the scope of reduced-order synchronization studied in relevant literatures. In this way, we can achieve generalized reduced-order synchronization between many famous chaotic systems such as the second-order Drifting system and the third-order Lorenz system by designing a fast slide mode controller. Simulation results are provided to verify the operation of the designed synchronization.展开更多
The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current in...The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.展开更多
A modified method of design of no-steady-error and anti-disturbance controller is proposed for the design of tank stabilizers. Using a reduced-order observer to estimate its mode, disturbance can be compensated. This ...A modified method of design of no-steady-error and anti-disturbance controller is proposed for the design of tank stabilizers. Using a reduced-order observer to estimate its mode, disturbance can be compensated. This enables the system to resist sinusoidal disturbance with any magnitude. Estimate of angular velocity is used as the state feedback to replace the expensive gyro and tachometer generator. The modified method excels the traditional, and provides a new way for the design of tank fire control system. It can also be applied for the design of other servo systems in vehicle and aircraft.展开更多
Despite the intensive studies on neurons, the control mechanism in real interactions of neurons is still unclear. This paper presents an understanding of this kind of control mechanism, controlling a neuron by stimula...Despite the intensive studies on neurons, the control mechanism in real interactions of neurons is still unclear. This paper presents an understanding of this kind of control mechanism, controlling a neuron by stimulating another coupled neuron, with the uncertainties taken into consideration for both neurons. Two observers and a differentiator, which comprise the first-order low-pass filters, are first designed for estimating the uncertainties. Then, with the estimated values combined, a robust nonlinear controller with a saturation function is presented to track the desired membrane potential. Finally,two typical bursters of neurons with the desired membrane potentials are proposed in the simulation, and the numerical results show that they are tracked very well by the proposed controller.展开更多
Microgrid has emerged as an answer to growing demand for distributed generation(DG) in power systems. It contains several DG units including microalternator, photovoltaic system and wind generation. It turns out that ...Microgrid has emerged as an answer to growing demand for distributed generation(DG) in power systems. It contains several DG units including microalternator, photovoltaic system and wind generation. It turns out that sustained operation relies on the stability of these constituent systems. In this paper, a microgrid consisting of microalternator and photovoltaic system is modeled as a networked control system of systems(So S)subjected to packet dropouts and delays. Next, an observerbased controller is designed to stabilize the system in presence of the aforementioned communication constraints and simulation results are provided to support the control design methodology.展开更多
Initiated three decades ago,integrated design of controllers and fault detectors has continuously attracted research attention.The recent development of the unified control and detection framework with an observer-bas...Initiated three decades ago,integrated design of controllers and fault detectors has continuously attracted research attention.The recent development of the unified control and detection framework with an observer-based residual generator in its core gives a more general form of the previous works.Its applications to residual centred modelling of uncertain control systems,fault detection in feedback control systems with uncertainties,fault-tolerant control(FTC)as well as control performance degradation monitoring,detection and recovery are introduced.In conclusion,some future perspectives are proposed.展开更多
OVER the last decade, the H~∞ control has been recognized as one of the most effective tools for robust control. A lot of researches have been devoted to robust H~∞ problems for uncertain systems. Recently, Zhou et ...OVER the last decade, the H~∞ control has been recognized as one of the most effective tools for robust control. A lot of researches have been devoted to robust H~∞ problems for uncertain systems. Recently, Zhou et al., presented the notion of strongly robust H~∞ performance, which is an extension of quadratic stability and equivalent to robust H~∞ problem. However. only state-feedback controllers were discussed.展开更多
This paper addresses the analysis, design, and application of observer-based nonlinear controls by combining feedback linearization (FBL) and backstepping (BS) techniques with Luenberger observers. Complete developmen...This paper addresses the analysis, design, and application of observer-based nonlinear controls by combining feedback linearization (FBL) and backstepping (BS) techniques with Luenberger observers. Complete development of observer-based controls is presented for a bioprocess. Controllers using input-output feedback linearization and backstepping techniques are designed first, assuming that all states are available for feedback. Next, the construction of observer in the transformed domain is presented based on input-output feedback linearization. This approach is then extended to observer design based on backstepping approach using the error equation resulted from the backstepping design procedure. Simulation results demonstrating the effectiveness of the techniques developed are presented and compared.展开更多
A discrete-dine control system model of equipment spare parts is proposed In this model,the stochastic demand, of the spare parts is described by the state equation disturbance. The controlpolicy of the system was ded...A discrete-dine control system model of equipment spare parts is proposed In this model,the stochastic demand, of the spare parts is described by the state equation disturbance. The controlpolicy of the system was deduced by means of the methods of a multivariable self-tuning regulatorand reduced-cud r state observer. An example was given in the end.展开更多
基金supported by National Natural Science Foundation of China(61573200,61973175)the Fundamental Research Funds for the Central Universities,Nankai University(63201196)。
文摘Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.
基金supported by the National Natural Science Foundation of China(62173029,62273033,U20A20225)the Fundamental Research Funds for the Central Universities,China(FRF-BD-19-002A)。
文摘This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.
基金supported by the National Natural Science Foundation of China(61773056)the Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(USTB)(BK19AE018)+2 种基金the Fundamental Research Funds for the Central Universities of USTB(FRF-TP-20-09B,230201606500061,FRF-DF-20-35,FRF-BD-19-002A)supported by Zhejiang Natural Science Foundation(LD21F030001)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and Information and Communications Technology)(NRF-2020R1A2C1005449)。
文摘This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.
基金This work was supported by the National Natural Science Foundation of China(62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions(2019KJI008).
文摘This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.
基金supported in part by the National Natural Science Foundation of China(61473080,61573099,61973080,61750110525,61633003)。
文摘In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturbances/uncertainties. To cope with these requirements, this paper proposes a novel dynamic event-triggered robust tracking control method for a onedegree of freedom(DOF) link manipulator with external disturbance and system uncertainties via a reduced-order generalized proportional-integral observer(GPIO). By only using the sampled-data position signal, a new sampled-data robust output feedback tracking controller is proposed based on a reduced-order GPIO to attenuate the undesirable influence of the external disturbance and the system uncertainties. To save the communication resources, we propose a discrete-time dynamic event-triggering mechanism(DETM), where the estimates and the control signal are transmitted and computed only when the proposed discrete-time DETM is violated. It is shown that with the proposed control method, both tracking control properties and communication properties can be significantly improved. Finally, simulation results are shown to demonstrate the feasibility and efficacy of the proposed control approach.
文摘The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analysis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based controls are employed, where the unmeasured state variables are estimated for practical implementations. These observer-based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic ECG signal processing devices.
文摘This article proposes an innovative strategy to the problem of non-linear estimation of states for electrical machine systems. This method allows the estimation of variables that are difficult to access or that are simply impossible to measure. Thus, as compared with a full-order sliding mode observer, in order to reduce the execution time of the estimation, a reduced-order discrete-time Extended sliding mode observer is proposed for on-line estimation of rotor flux, speed and rotor resistance in an induction motor using a robust feedback linearization control. Simulations results on Matlab-Simulink environment for a 1.8 kW induction motor are presented to prove the effectiveness and high robustness of the proposed nonlinear control and observer against modeling uncertainty and measurement noise.
文摘This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our proposed delay-dependent coupled LMIs criterion lies in that: ( 1 ) it can optimize one of multiple time delays with others selected properly, and at the same time, the feedback-gain and observer-gain can be obtained, respectively. (2) it is less conservative than the existing delay-independent ones in the literature. Algorithm to solve the coupled LMIs is also given. Numerical examples illustrate the effectiveness of our method. Keywords Delay-dependent criterion - Time-delay system - Multiple time-delay - Observer-based controller - Linear matrixinequality (LMI)
基金supported by the National Basic Research Program of China (No.2007CB714006)
文摘This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.
基金supported by the Natural Science Foundation of Tianjin under Grant No.18JCYBJC88000.
文摘This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditions,the authors derive less conservative criterion for the controller design and observer design.A new criterion is proposed to ensure the closed-loop system is finite-time bounded(FTB).The sufficient conditions are established to ensure the closed-loop system is H_(∞)finite-time bounded(H_(∞)FTB)in terms of matrix inequalities.The controller gains and observer gains are given.A numerical example is provided to demonstrate the effectiveness of the proposed results.
基金supported by the State Grid Corporation Science and Technology Project“Overall process optimization control technology of frequency support for large-scale offshore wind power farm in receiving-end grid”(No.5211DS23000F)。
文摘With the increasing wind power penetration in the power system,the auxiliary frequency control(AFC)of wind farm(WF)has been widely used.The traditional system frequency response(SFR)model is not suitable for the wind power generation system due to its poor accuracy and applicability.In this paper,a piecewise reduced-order frequency response(PROFR)model is proposed,and an optimized auxiliary frequency control(O-AFC)scheme of WF based on the P-ROFR model is proposed.Firstly,a full-order frequency response model considering the change in operating point of wind turbine is established to improve the applicability.In order to simplify the fullorder model,a P-ROFR model with second-order structure and high accuracy at each frequency response stage is proposed.Based on the proposed P-ROFR model,the relationship between the frequency response indexes and the auxiliary frequency controller coefficients is expressed explicitly.Then,an OAFC scheme with the derived explicit expression as the optimization objective is proposed in order to improve the frequency support capability on the premise of ensuring the full release of the rotor kinetic energy and the full use of the effect of time delay on frequency regulation.Finally,the effectiveness of the proposed P-ROFR model and the performance of the proposed OAFC scheme are verified by simulation studies.
基金Project supported by the National Natural Science Foundation of China (Grant No 60374037) and the National High Technology Development Program of China (Grant No 2004BA204B08-02).
文摘A new kind of generalized reduced-order synchronization of different chaotic systems is proposed in this paper. It is shown that dynamical evolution of third-order oscillator can be synchronized with the canonical projection of a fourth-order chaotic system generated through nonsingular states transformation from a cell neural net chaotic system. In this sense, it is said that generalized synchronization is achieved in reduced-order. The synchronization discussed here expands the scope of reduced-order synchronization studied in relevant literatures. In this way, we can achieve generalized reduced-order synchronization between many famous chaotic systems such as the second-order Drifting system and the third-order Lorenz system by designing a fast slide mode controller. Simulation results are provided to verify the operation of the designed synchronization.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(Grant No.SGSDJY00GPJS2100135).
文摘The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.
文摘A modified method of design of no-steady-error and anti-disturbance controller is proposed for the design of tank stabilizers. Using a reduced-order observer to estimate its mode, disturbance can be compensated. This enables the system to resist sinusoidal disturbance with any magnitude. Estimate of angular velocity is used as the state feedback to replace the expensive gyro and tachometer generator. The modified method excels the traditional, and provides a new way for the design of tank fire control system. It can also be applied for the design of other servo systems in vehicle and aircraft.
基金Project supported by the National Natural Science Foundation of China(No.11372354)the Jiangsu Innovation Program for Graduate Education(No.KYLX16 0308)
文摘Despite the intensive studies on neurons, the control mechanism in real interactions of neurons is still unclear. This paper presents an understanding of this kind of control mechanism, controlling a neuron by stimulating another coupled neuron, with the uncertainties taken into consideration for both neurons. Two observers and a differentiator, which comprise the first-order low-pass filters, are first designed for estimating the uncertainties. Then, with the estimated values combined, a robust nonlinear controller with a saturation function is presented to track the desired membrane potential. Finally,two typical bursters of neurons with the desired membrane potentials are proposed in the simulation, and the numerical results show that they are tracked very well by the proposed controller.
基金supported by the Deanship for Scientific Research(DSR)at KFUPM through Distinguished Professorship Research Project(IN-141003)
文摘Microgrid has emerged as an answer to growing demand for distributed generation(DG) in power systems. It contains several DG units including microalternator, photovoltaic system and wind generation. It turns out that sustained operation relies on the stability of these constituent systems. In this paper, a microgrid consisting of microalternator and photovoltaic system is modeled as a networked control system of systems(So S)subjected to packet dropouts and delays. Next, an observerbased controller is designed to stabilize the system in presence of the aforementioned communication constraints and simulation results are provided to support the control design methodology.
基金This work was supported by the National Natural Science Foundation of China(62020106003,62073029)the Beijing Natural Science Foundation(4202045)the Fundamental Research Funds for the Central Universities(FRF-TP-20-012A3).
文摘Initiated three decades ago,integrated design of controllers and fault detectors has continuously attracted research attention.The recent development of the unified control and detection framework with an observer-based residual generator in its core gives a more general form of the previous works.Its applications to residual centred modelling of uncertain control systems,fault detection in feedback control systems with uncertainties,fault-tolerant control(FTC)as well as control performance degradation monitoring,detection and recovery are introduced.In conclusion,some future perspectives are proposed.
文摘OVER the last decade, the H~∞ control has been recognized as one of the most effective tools for robust control. A lot of researches have been devoted to robust H~∞ problems for uncertain systems. Recently, Zhou et al., presented the notion of strongly robust H~∞ performance, which is an extension of quadratic stability and equivalent to robust H~∞ problem. However. only state-feedback controllers were discussed.
文摘This paper addresses the analysis, design, and application of observer-based nonlinear controls by combining feedback linearization (FBL) and backstepping (BS) techniques with Luenberger observers. Complete development of observer-based controls is presented for a bioprocess. Controllers using input-output feedback linearization and backstepping techniques are designed first, assuming that all states are available for feedback. Next, the construction of observer in the transformed domain is presented based on input-output feedback linearization. This approach is then extended to observer design based on backstepping approach using the error equation resulted from the backstepping design procedure. Simulation results demonstrating the effectiveness of the techniques developed are presented and compared.
文摘A discrete-dine control system model of equipment spare parts is proposed In this model,the stochastic demand, of the spare parts is described by the state equation disturbance. The controlpolicy of the system was deduced by means of the methods of a multivariable self-tuning regulatorand reduced-cud r state observer. An example was given in the end.