Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ...Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.展开更多
This paper studied the effect of reducing application of chemical fertilizer,increasing application of functional organic fertilizer and trace elements and fully using biological pesticides on physiological traits,yie...This paper studied the effect of reducing application of chemical fertilizer,increasing application of functional organic fertilizer and trace elements and fully using biological pesticides on physiological traits,yield and quality of radish. The results showed that applying functional organic fertilizer and trace elements and fully using biological pesticides could help to significantly improve the radish fleshy root yield,increase soluble sugar and vitamin C content,reduce crude fiber and nitrate content,but had no significant influence on radish moisture content,glucosinolates and chlorpyrifos content in organophosphorus pesticides.展开更多
This work presents a chemical kinetic analysis of different species involved in nitrogen-oxygen mixed gas induced by stationary corona discharge at room temperature and atmospheric pressure.This study takes into accou...This work presents a chemical kinetic analysis of different species involved in nitrogen-oxygen mixed gas induced by stationary corona discharge at room temperature and atmospheric pressure.This study takes into account twenty different chemical species participating in one hundred and seventy selected chemical reactions.The reaction rate coefficients are taken from the literature,and the density is analyzed by the continuity equation without the diffusion term.A large number of investigations considered the removal of NOx showing the effects of N,O and O3 radicals.The aim of the present simulation is to complete these studies by analysing various plasma species under different reduced electric fields in the range of 100-200 Td(1 Td=10-21 V·m^2).In particular,we analyze the time evolution of depopulation(10^-9-10^-3s)of NOx.We have found that the depopulation rate of NO and NO2 is substantially affected by the rise of reduced electric field as it grows from 100 Td to 200 Td.This allows us to ascertain the important role played by the reduced electric field.展开更多
A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different e...A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310- 375 K and initial pressure 0, 1-0.3 MPa, The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.展开更多
At room temperature, 300 K, silicon carbide film was formed using monomethylsilane gas on the reactive surface prepared using argon plasma. Entire process was performed at reduced pressure of 10 Pa in the argon plasma...At room temperature, 300 K, silicon carbide film was formed using monomethylsilane gas on the reactive surface prepared using argon plasma. Entire process was performed at reduced pressure of 10 Pa in the argon plasma etcher, without a substrate transfer operation. By this process, the several-nanometer-thick amorphous thin film containing silicon-carbon bonds was obtained on various substrates, such as semiconductor silicon, aluminum and stainless steel. It is concluded that the room temperature silicon carbide thin film formation is possible even at significantly low pressure, when the substrate surface is reactive.展开更多
As the hydrazine is toxic, the methods to detect hydrazine at low concentrations are essential in scientific research. This preliminary study reported on how to increase the efficiency of ZnO/reduced graphene oxide (r...As the hydrazine is toxic, the methods to detect hydrazine at low concentrations are essential in scientific research. This preliminary study reported on how to increase the efficiency of ZnO/reduced graphene oxide (rGO) by adding durian peel ash (DPA) and using three-electrode method. The ZnO/rGO composites were prepared using chemical reaction of graphene oxide (GO) with zinc chloride. The rGO was prepared by the chemical reduction of GO using hydrazine. The properties of the samples were investigated using scanning electron microscopy, atomic force microscopy, X-ray diffraction, and Potentiostat/Galvanostat. The results showed that the optimal condition for the composite material was 70%DPA:30%ZnO/rGO with the sensitivity of 222.92 mA/mM<span style="white-space:nowrap;">·</span>cm<sup>2</sup> and the current density up to 116.50 ± 0.95 A/g. The relationship between the current and the hydrazine concentration was I (μA) = 48.69 + 21.91C (mM) with R<sup>2</sup> of 0.9870. The minimum concentration of hydrazine solution that the modified electrode can measure was 0.125 mM. The DPA powder can then be used to enhance the hydrazine detection efficiency at low concentrations.展开更多
Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result,...Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result, the quality and security of agricultural products are reduced, and the ecological and environmental integrities are threatened. Recently, environment-friendly pest management measures have been introduced and adopted to manage rice insect pests and reduce the use of insecticides. This paper reviewed the advancements in development and application of non-chemical technologies for insect pest management during rice production in China.展开更多
Microspheres of conducting polymers poly N-methylaniline (PNMA) were successfully synthesized through oxidation of N-methylaniline without any template. The average diameter of the microspheres with a smooth surface...Microspheres of conducting polymers poly N-methylaniline (PNMA) were successfully synthesized through oxidation of N-methylaniline without any template. The average diameter of the microspheres with a smooth surface was about 0.40 μm when 0.2 M N-methylanUine was oxidized with 0.2 M ammonium persulfate in 0.2 M of HClO4 solution. The size of microspheres can be controlled by changing reaction time and temperature. The acid concentration was critical for the formation of microspheres with smooth surfaces. The excellent antibacterial performance of PNMA in novolac epoxy coating to sulfate reducing bacteria was demonstrated. Moreover, in API media, PNMA inhibited growth of SRB and then reduced the corrosion rate of carbon steel remarkably.展开更多
Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing...Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing atmosphere.The crystal structure and morphology of CeO_(2)abrasive s were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR),ultraviolet—visible diffuse reflectance spectroscopy(UV-Vis DRS),and X-ray photoelectron spectroscopy(XPS).The CeO_(2)abrasives were obtained under different atmospheres(Air,Ar,and Ar/H_(2)).With the enhancement of the reducing atmosphere,the morphology of the abrasives transforms from spherical to octahedral,while more oxygen vacancies and Ce^(3+)are generated on the surface of CeO_(2)abrasives.The CMP experiments show that the MRRs of the CeO_(2)-Air,CeO_(2)-Ar,and CeO_(2)-Ar/H_(2)abrasives on SiO_(2)substrates are 337.60,578.74,and 691.28 nm/min,respectively.Moreover,as confirmed by atomic force microscopy(AFM),the substrate surfaces exhibit low roughness(20.5 nm)after being polished using all of the prepared samples.Especially,the MRR of CeO_(2)-Ar/H_(2)abrasives is increased by 104.76%compared with CeO_(2)-air abrasives.The improved CMP performance is attributed to the increased Ce^(3+)concentration and the octahedral morphology of the abrasives enhancing the chemical reaction and mechanical removal at the abrasive-substrate interface.展开更多
为了研究化肥减量配施有机肥对木薯根际土壤细菌多样性和群落结构及产量的影响,采用Illumina Nova 6000测序平台,对未施肥(CK)、有机肥(T_(1))、常规施肥+有机肥(T_(2))和化肥减施+有机肥(T_(3))等施肥方式处理下的华南12号木薯根际土...为了研究化肥减量配施有机肥对木薯根际土壤细菌多样性和群落结构及产量的影响,采用Illumina Nova 6000测序平台,对未施肥(CK)、有机肥(T_(1))、常规施肥+有机肥(T_(2))和化肥减施+有机肥(T_(3))等施肥方式处理下的华南12号木薯根际土壤进行16S rRNA高通量测序分析。结果表明,与CK相比,T_(3)处理不仅能显著增加木薯株高和茎粗,还能提高木薯产量。在相似水平为97%下聚类分析得到木薯根际土壤OTUs,分别为3603个(CK)、1688个(T_(1))、1276个(T_(2))和3317个(T_(3))。不同施肥方式改变土壤细菌的多样性和丰度,其物种多样性由高到低依次为:CK>T_(3)>T_(1)>T_(2)。基于土壤细菌群落的PCoA和聚类分析,CK和T_(3)细菌群落结构组成较为相似,T_(1)与T_(2)细菌群落结构组成相似。不同施肥处理下木薯根际土壤中优势菌门为变形菌门、拟杆菌门、酸杆菌门、厚壁菌门、放线菌门和绿弯菌门。化肥减施配施有机肥增加了变形菌门、拟杆菌门和放线菌门的相对丰度,降低了厚壁菌门和绿弯菌门的相对丰度。冗余性分析结果表明速效钾是影响木薯根际土壤菌群的主要效应因子。研究表明,化肥减量配施有机肥不仅能增加木薯的产量,还能改变木薯根际土壤细菌群落结构和多样性,为发展绿色、高效、可持续的木薯产业提供坚实的理论支撑。展开更多
基金the Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.
基金Supported by the Second Batch of Modern Agricultural Industry Technology System Project in Hubei Province
文摘This paper studied the effect of reducing application of chemical fertilizer,increasing application of functional organic fertilizer and trace elements and fully using biological pesticides on physiological traits,yield and quality of radish. The results showed that applying functional organic fertilizer and trace elements and fully using biological pesticides could help to significantly improve the radish fleshy root yield,increase soluble sugar and vitamin C content,reduce crude fiber and nitrate content,but had no significant influence on radish moisture content,glucosinolates and chlorpyrifos content in organophosphorus pesticides.
文摘This work presents a chemical kinetic analysis of different species involved in nitrogen-oxygen mixed gas induced by stationary corona discharge at room temperature and atmospheric pressure.This study takes into account twenty different chemical species participating in one hundred and seventy selected chemical reactions.The reaction rate coefficients are taken from the literature,and the density is analyzed by the continuity equation without the diffusion term.A large number of investigations considered the removal of NOx showing the effects of N,O and O3 radicals.The aim of the present simulation is to complete these studies by analysing various plasma species under different reduced electric fields in the range of 100-200 Td(1 Td=10-21 V·m^2).In particular,we analyze the time evolution of depopulation(10^-9-10^-3s)of NOx.We have found that the depopulation rate of NO and NO2 is substantially affected by the rise of reduced electric field as it grows from 100 Td to 200 Td.This allows us to ascertain the important role played by the reduced electric field.
基金SUPPORTED BY NATIONAL KEY BASIC RESEARCH PLAN ("973" PLAN, NO. 2001CB209202).
文摘A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310- 375 K and initial pressure 0, 1-0.3 MPa, The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.
文摘At room temperature, 300 K, silicon carbide film was formed using monomethylsilane gas on the reactive surface prepared using argon plasma. Entire process was performed at reduced pressure of 10 Pa in the argon plasma etcher, without a substrate transfer operation. By this process, the several-nanometer-thick amorphous thin film containing silicon-carbon bonds was obtained on various substrates, such as semiconductor silicon, aluminum and stainless steel. It is concluded that the room temperature silicon carbide thin film formation is possible even at significantly low pressure, when the substrate surface is reactive.
文摘As the hydrazine is toxic, the methods to detect hydrazine at low concentrations are essential in scientific research. This preliminary study reported on how to increase the efficiency of ZnO/reduced graphene oxide (rGO) by adding durian peel ash (DPA) and using three-electrode method. The ZnO/rGO composites were prepared using chemical reaction of graphene oxide (GO) with zinc chloride. The rGO was prepared by the chemical reduction of GO using hydrazine. The properties of the samples were investigated using scanning electron microscopy, atomic force microscopy, X-ray diffraction, and Potentiostat/Galvanostat. The results showed that the optimal condition for the composite material was 70%DPA:30%ZnO/rGO with the sensitivity of 222.92 mA/mM<span style="white-space:nowrap;">·</span>cm<sup>2</sup> and the current density up to 116.50 ± 0.95 A/g. The relationship between the current and the hydrazine concentration was I (μA) = 48.69 + 21.91C (mM) with R<sup>2</sup> of 0.9870. The minimum concentration of hydrazine solution that the modified electrode can measure was 0.125 mM. The DPA powder can then be used to enhance the hydrazine detection efficiency at low concentrations.
基金supported by the China Agriculture Research System(CARS-01-17)the National Key Research&Development Plan of China(Grant No.2016YFD0200804)+1 种基金Zhejiang Provincial Key Research&Development Plan(Grant No.2015C02014)State Key Laboratory Breeding Base for Zhejiang Sustainable Pest Control(Grant No.2010DS700124ZZ1601)
文摘Chemical pesticides play crucial roles in the management of crop diseases and pests. However, excessive and irrational use of pesticides has become a major concern and obstacle to sustainable agriculture. As a result, the quality and security of agricultural products are reduced, and the ecological and environmental integrities are threatened. Recently, environment-friendly pest management measures have been introduced and adopted to manage rice insect pests and reduce the use of insecticides. This paper reviewed the advancements in development and application of non-chemical technologies for insect pest management during rice production in China.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education MinistryNatural Science Foundation of Hubei Province of China(No.2006ABA078)
文摘Microspheres of conducting polymers poly N-methylaniline (PNMA) were successfully synthesized through oxidation of N-methylaniline without any template. The average diameter of the microspheres with a smooth surface was about 0.40 μm when 0.2 M N-methylanUine was oxidized with 0.2 M ammonium persulfate in 0.2 M of HClO4 solution. The size of microspheres can be controlled by changing reaction time and temperature. The acid concentration was critical for the formation of microspheres with smooth surfaces. The excellent antibacterial performance of PNMA in novolac epoxy coating to sulfate reducing bacteria was demonstrated. Moreover, in API media, PNMA inhibited growth of SRB and then reduced the corrosion rate of carbon steel remarkably.
基金the National Natural Science Foundation of China(51905324)the Scientific Research Program Funded by Shaanxi Provincial Education Department(20JK0545)the Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology(2018BJ-14)。
文摘Ce^(3+)as the active site on the CeO_(2)abrasive surface is the key to enhancing the material removal rate(MRR).The CeO_(2)abrasives with high chemical activity were prepared by the molten salt method under a reducing atmosphere.The crystal structure and morphology of CeO_(2)abrasive s were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR),ultraviolet—visible diffuse reflectance spectroscopy(UV-Vis DRS),and X-ray photoelectron spectroscopy(XPS).The CeO_(2)abrasives were obtained under different atmospheres(Air,Ar,and Ar/H_(2)).With the enhancement of the reducing atmosphere,the morphology of the abrasives transforms from spherical to octahedral,while more oxygen vacancies and Ce^(3+)are generated on the surface of CeO_(2)abrasives.The CMP experiments show that the MRRs of the CeO_(2)-Air,CeO_(2)-Ar,and CeO_(2)-Ar/H_(2)abrasives on SiO_(2)substrates are 337.60,578.74,and 691.28 nm/min,respectively.Moreover,as confirmed by atomic force microscopy(AFM),the substrate surfaces exhibit low roughness(20.5 nm)after being polished using all of the prepared samples.Especially,the MRR of CeO_(2)-Ar/H_(2)abrasives is increased by 104.76%compared with CeO_(2)-air abrasives.The improved CMP performance is attributed to the increased Ce^(3+)concentration and the octahedral morphology of the abrasives enhancing the chemical reaction and mechanical removal at the abrasive-substrate interface.
文摘为了研究化肥减量配施有机肥对木薯根际土壤细菌多样性和群落结构及产量的影响,采用Illumina Nova 6000测序平台,对未施肥(CK)、有机肥(T_(1))、常规施肥+有机肥(T_(2))和化肥减施+有机肥(T_(3))等施肥方式处理下的华南12号木薯根际土壤进行16S rRNA高通量测序分析。结果表明,与CK相比,T_(3)处理不仅能显著增加木薯株高和茎粗,还能提高木薯产量。在相似水平为97%下聚类分析得到木薯根际土壤OTUs,分别为3603个(CK)、1688个(T_(1))、1276个(T_(2))和3317个(T_(3))。不同施肥方式改变土壤细菌的多样性和丰度,其物种多样性由高到低依次为:CK>T_(3)>T_(1)>T_(2)。基于土壤细菌群落的PCoA和聚类分析,CK和T_(3)细菌群落结构组成较为相似,T_(1)与T_(2)细菌群落结构组成相似。不同施肥处理下木薯根际土壤中优势菌门为变形菌门、拟杆菌门、酸杆菌门、厚壁菌门、放线菌门和绿弯菌门。化肥减施配施有机肥增加了变形菌门、拟杆菌门和放线菌门的相对丰度,降低了厚壁菌门和绿弯菌门的相对丰度。冗余性分析结果表明速效钾是影响木薯根际土壤菌群的主要效应因子。研究表明,化肥减量配施有机肥不仅能增加木薯的产量,还能改变木薯根际土壤细菌群落结构和多样性,为发展绿色、高效、可持续的木薯产业提供坚实的理论支撑。