Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior ...Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM) combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.展开更多
The microbiologically influenced corrosion(MIC) mechanisms of copper by Pseudomonas aeruginosa as a typical strain of nitrate reducing bacteria(NRB) was investigated in this lab study.Cu was immersed in deoxygenated L...The microbiologically influenced corrosion(MIC) mechanisms of copper by Pseudomonas aeruginosa as a typical strain of nitrate reducing bacteria(NRB) was investigated in this lab study.Cu was immersed in deoxygenated LB-NO3 seawater inoculated with P.aeruginosa and incubated for 2 weeks.Results showed that this NRB caused pitting and uniform corrosion.The maximum pit depths after 7 d and 14 d in125 mL anaerobic vials with 50 mL broth were 5.1 μm and 9.1 μm,accompanied by specific weight losses of 1.3 mg/cm2(7 d) and 1.7 mg/cm2(14 d),respectively.Electrochemical measurements corroborated weight loss and pit depth data trends.Experimental results indicated that extracellular electron transfer for nitrate reduction was the main MIC mechanism and ammonia secreted by P.aeruginosa could also play a role in the overall Cu corrosion process.展开更多
Sulfate reducing bacteria(SRB) are often the culprits of microbiologically influenced corrosion(MIC) in anoxic environments because sulfate is a ubiquitous oxidant. MIC of carbon steel caused by SRB is the most intens...Sulfate reducing bacteria(SRB) are often the culprits of microbiologically influenced corrosion(MIC) in anoxic environments because sulfate is a ubiquitous oxidant. MIC of carbon steel caused by SRB is the most intensively investigated topic in MIC because of its practical importance. It is also because biogenic sulfides complicate mechanistic SRB MIC studies, making SRB MIC of carbon steel is a long-lasting topic that has generated considerable confusions. It is expedient to think that biogenic H_2S secreted by SRB acidifies the broth because it is an acid gas. However, this is not true because endogenous H_2S gets its H^+ from organic carbon oxidation and the fluid itself in the first place rather than an external source. Many people believe that biogenic H_2S is responsible for SRB MIC of carbon steel. However, in recent years,well designed mechanistic studies provided evidence that contradicts this misconception. Experimental data have shown that cathodic electron harvest by an SRB biofilm from elemental iron via extracellular electron transfer(EET) for energy production by SRB is the primary cause. It has been demonstrated that when a mature SRB biofilm is subjected to carbon source starvation, it switches to elemental iron as an electron source and becomes more corrosive. It is anticipated that manipulations of EET related genes will provide genetic-level evidence to support the biocathode theory in the future. This kind of new advances will likely lead to new gene probes or transcriptomics tools for detecting corrosive SRB strains that possess high EET capabilities.展开更多
基金the National Natural Science Foundation of China (No. 40376023 and 40406022)
文摘Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM) combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.
基金supported by China Postdoctoral Science Foundation (Grant Nos. 2019T120610 and 2018M640655)Open Fund of Shandong Key Laboratory of Corrosion Science (Grant No. KLCS201903)National Natural Science Foundation of China (Grant Nos. 51572249 and U1806223)。
文摘The microbiologically influenced corrosion(MIC) mechanisms of copper by Pseudomonas aeruginosa as a typical strain of nitrate reducing bacteria(NRB) was investigated in this lab study.Cu was immersed in deoxygenated LB-NO3 seawater inoculated with P.aeruginosa and incubated for 2 weeks.Results showed that this NRB caused pitting and uniform corrosion.The maximum pit depths after 7 d and 14 d in125 mL anaerobic vials with 50 mL broth were 5.1 μm and 9.1 μm,accompanied by specific weight losses of 1.3 mg/cm2(7 d) and 1.7 mg/cm2(14 d),respectively.Electrochemical measurements corroborated weight loss and pit depth data trends.Experimental results indicated that extracellular electron transfer for nitrate reduction was the main MIC mechanism and ammonia secreted by P.aeruginosa could also play a role in the overall Cu corrosion process.
基金funding by the National Natural Science Foundation of China (Nos.51501203 and U1660118)the National Basic Research Program of China (973 Program Project,No.2014CB643300)+1 种基金the National Environmental Corrosion Platform (NECP)T.U.is sponsored by a postdoctoral fellowship from The Scientific and Technological Research Council of Turkey (TUBITAK-2219)
文摘Sulfate reducing bacteria(SRB) are often the culprits of microbiologically influenced corrosion(MIC) in anoxic environments because sulfate is a ubiquitous oxidant. MIC of carbon steel caused by SRB is the most intensively investigated topic in MIC because of its practical importance. It is also because biogenic sulfides complicate mechanistic SRB MIC studies, making SRB MIC of carbon steel is a long-lasting topic that has generated considerable confusions. It is expedient to think that biogenic H_2S secreted by SRB acidifies the broth because it is an acid gas. However, this is not true because endogenous H_2S gets its H^+ from organic carbon oxidation and the fluid itself in the first place rather than an external source. Many people believe that biogenic H_2S is responsible for SRB MIC of carbon steel. However, in recent years,well designed mechanistic studies provided evidence that contradicts this misconception. Experimental data have shown that cathodic electron harvest by an SRB biofilm from elemental iron via extracellular electron transfer(EET) for energy production by SRB is the primary cause. It has been demonstrated that when a mature SRB biofilm is subjected to carbon source starvation, it switches to elemental iron as an electron source and becomes more corrosive. It is anticipated that manipulations of EET related genes will provide genetic-level evidence to support the biocathode theory in the future. This kind of new advances will likely lead to new gene probes or transcriptomics tools for detecting corrosive SRB strains that possess high EET capabilities.