CaAl2 Si2 O8- Al2 O3- CaAl12 O19) (CAS2- Al2 O3 -CA6 ) composite was synthesized through reaction sintering alumina and bauxite reducing slag. The CAS2-Al2 O3-CA5 composite was mainly composed of α-Al2O3 , CAS2 , ...CaAl2 Si2 O8- Al2 O3- CaAl12 O19) (CAS2- Al2 O3 -CA6 ) composite was synthesized through reaction sintering alumina and bauxite reducing slag. The CAS2-Al2 O3-CA5 composite was mainly composed of α-Al2O3 , CAS2 , and CA6. Gehlenite (Ca2 Al2 SiO7 , C2 AS) phase was effectively transformed to CASe and CA6 through high-temperature reaction sintering under weak oxidizing atmosphere at 1400 ℃for 4 h. SEM (scanning electron microscopy) and EDS (energy dispersive spectroscopy) analysis indicated that black and needle-shaped Al2O3, rhombic or irregular polygonal shaped FeAl2O4 , and glassy phase Ca2 Al2 SiO7 disappeared after the reaction sintering. The light gray and flaky hexagon crystals of CaAl12 O19 (10 μm) and the grainy particles of Al2O3 (2-7 μm) were observed in the CASe-Al2 O3-CA6 composite. The gray crystals of CASe act as the binding phase and are distributed around CA6 and Al2O3. CAS2-Al2O3-CA6 composite exhibits high refractoriness and service temperature, which are 1 650 ℃ and 1 450 ℃, respectively. Reaction sintering of alumina and bauxite reducing slag is a feasible method for the synthesis of CAS2-Al2 O3-CA6 composite.展开更多
Reducing steel slag (RSS) was mainly acquired from five electric-arc furnace (EAF) steelmaking plants (among them, the products of two plants were carbon steel and those of other plants were stainless steel) for...Reducing steel slag (RSS) was mainly acquired from five electric-arc furnace (EAF) steelmaking plants (among them, the products of two plants were carbon steel and those of other plants were stainless steel) for research tests. The chemical properties, compound compositions, activities and contents of main expansive compounds were tested. The results showed that the field sampled RSS had a very high crystallinity and hydraulicity with main chemical compositions close to those of Portland cement. It can be known from the study that in case of C/S ratio higher than 2.0, the main compound compositions are C2S, C3S, C2F and f-CaO. However, after the RSS was stored for six months, an obvious variation occurred with potential pre-hydration in RSS, where the SO3 content was slightly reduced and the compressive activity index was obviously higher than that at the 28th day.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51374262)Special Fund for Basic Scientific Research in Colleges and Universities of Central Business of China(0903005203413)
文摘CaAl2 Si2 O8- Al2 O3- CaAl12 O19) (CAS2- Al2 O3 -CA6 ) composite was synthesized through reaction sintering alumina and bauxite reducing slag. The CAS2-Al2 O3-CA5 composite was mainly composed of α-Al2O3 , CAS2 , and CA6. Gehlenite (Ca2 Al2 SiO7 , C2 AS) phase was effectively transformed to CASe and CA6 through high-temperature reaction sintering under weak oxidizing atmosphere at 1400 ℃for 4 h. SEM (scanning electron microscopy) and EDS (energy dispersive spectroscopy) analysis indicated that black and needle-shaped Al2O3, rhombic or irregular polygonal shaped FeAl2O4 , and glassy phase Ca2 Al2 SiO7 disappeared after the reaction sintering. The light gray and flaky hexagon crystals of CaAl12 O19 (10 μm) and the grainy particles of Al2O3 (2-7 μm) were observed in the CASe-Al2 O3-CA6 composite. The gray crystals of CASe act as the binding phase and are distributed around CA6 and Al2O3. CAS2-Al2O3-CA6 composite exhibits high refractoriness and service temperature, which are 1 650 ℃ and 1 450 ℃, respectively. Reaction sintering of alumina and bauxite reducing slag is a feasible method for the synthesis of CAS2-Al2 O3-CA6 composite.
文摘Reducing steel slag (RSS) was mainly acquired from five electric-arc furnace (EAF) steelmaking plants (among them, the products of two plants were carbon steel and those of other plants were stainless steel) for research tests. The chemical properties, compound compositions, activities and contents of main expansive compounds were tested. The results showed that the field sampled RSS had a very high crystallinity and hydraulicity with main chemical compositions close to those of Portland cement. It can be known from the study that in case of C/S ratio higher than 2.0, the main compound compositions are C2S, C3S, C2F and f-CaO. However, after the RSS was stored for six months, an obvious variation occurred with potential pre-hydration in RSS, where the SO3 content was slightly reduced and the compressive activity index was obviously higher than that at the 28th day.