Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in...Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.展开更多
The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K....The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: Fe O + FeTiO_3 → Fe_2 TiO_4 → FeTiO_3 → FeTi_2O_5 → TiO_2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 k J·mol^(-1).展开更多
Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on...Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.展开更多
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo...The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.展开更多
The synthesis and spectroscopic characterization of cobalt(Ⅱ) 5-(4-pyridyl)-10,15,20-triphe- nylporphyrin,cobalt(Ⅱ) 5-(4-N-hexadecylpyridiniumyl)-10,15,20-triphenylporphyrin bromide and cobalt(Ⅱ) 5-(2-aminophenyl)-...The synthesis and spectroscopic characterization of cobalt(Ⅱ) 5-(4-pyridyl)-10,15,20-triphe- nylporphyrin,cobalt(Ⅱ) 5-(4-N-hexadecylpyridiniumyl)-10,15,20-triphenylporphyrin bromide and cobalt(Ⅱ) 5-(2-aminophenyl)-10,15,20-triphenyl-porphyrin are reported.The corresponding copper and vanadyl derivatives ((TriP)Cu,[(hTriP)Cu]^+Br^- and [(hTriP)VO]^+Br^-) were also studied.Each metalloporphyrin was characterized by UV-visible,ESR and ~1H NMR spectroscopy.These me- talloporphyrins can be firmly adsorbed on the glassy carbon (GC) surface.The catalytic reduction of dioxygen at GC electrodes modified by these catalysts was studied by cyclic voltammetry (CV).The kinetic process of dioxygen reduction at the cobalt porphyrin-modified electrodes was studied with a rotating ring disk electrode.展开更多
The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on...The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on glass carbon electrode in both alkaline and acid solution. Catalytic activity of PCoPP goes through a maximum with increase of film thickness.A model was proposed to explain such dependence.The effect of film thickness and solution pH on the stability of PCoPP film was studied.展开更多
The large consumption and discharge of diclofenac(DCF) lead to its frequent detection in surface water and groundwater, posing great threats to humans and ecosystems. This study explored the oxidation kinetics of DCF ...The large consumption and discharge of diclofenac(DCF) lead to its frequent detection in surface water and groundwater, posing great threats to humans and ecosystems. This study explored the oxidation kinetics of DCF by permanganate(Mn(Ⅶ)), and expounded the underlying reason for the unusual p Hdependency that was unclear in previous studies. The kinetics of DCF analogues(i.e., aromatic secondary amines) by Mn(Ⅶ) oxidation were comparatively investigated. Then, a tentative kinetic model involving the formation of an intermediate between Mn(Ⅶ) and DCF or its analogues was proposed to fit the p H-rate profile. Since DCF contained two chloro groups, and a carboxyl group which could be ionized by negative electrospray ionization, a precursor ionization scanning approach was used for the first time for detection of N-containing chlorinated oxidation products. New degradation pathways of DCF containing ring opening, carboxylation, carbonylation, electrophilic addition, hydroxylation and dehydrogenation were proposed based on the identified oxidation products. Moreover, it was demonstrated that the introduction of various reducing agents such as Mn(Ⅱ), Fe(Ⅱ) and bisulfite significantly improved the oxidation kinetics of DCF by Mn(Ⅶ). The positive effects of Mn(Ⅱ) and Fe(Ⅱ) were mainly attributed to the accelerated formation of MnO_(2)that acted as a catalyst or co-oxidizer contributing to DCF degradation. The presence of bisulfite caused two-stage kinetics, where a sharp drop of DCF concentration followed by a slowdown of DCF removal. In the first stage, potent reactive manganese species(e.g., Mn(Ⅲ), Mn(V), and Mn(VI)) and sulfate radical were generated during reaction of bisulfite with Mn(Ⅶ), whereas bisulfite was depleted fast due to excess Mn(Ⅶ) concentrations and the system became the Mn(Ⅶ)/MnO_(2)system in the second stage. These results provide new insight into reaction mechanism of DCF with Mn(Ⅶ)as well as propose a feasible strategy for enhancing the treatment of DCF contaminated water by Mn(Ⅶ).展开更多
Weak magnetic field(WMF) was employed to improve the removal of Cr(VI) by zero-valent iron(ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a ...Weak magnetic field(WMF) was employed to improve the removal of Cr(VI) by zero-valent iron(ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a WMF, and the WMF-induced improvement was more remarkable at higher Cr(VI) concentration and higher p H. Fe2+was not detected until Cr(VI) was exhausted, and there was a positive correlation between the WMF-induced promotion factor of Cr(VI) removal rate and that of Fe2+release rate in the absence of Cr(VI) at pH 4.0-5.5. These phenomena imply that ZVI corrosion with Fe2+release was the limiting step in the process of Cr(VI) removal. The superimposed WMF had negligible influence on the apparent activation energy of Cr(VI) removal by ZVI, indicating that WMF accelerated Cr(VI)removal by ZVI but did not change the mechanism. The passive layer formed with WMF was much more porous than without WMF, thereby facilitating mass transport. Therefore,WMF could accelerate ZVI corrosion and alleviate the detrimental effects of the passive layer, resulting in more rapid removal of Cr(VI) by ZVI. Exploiting the magnetic memory of ZVI, a two-stage process consisting of a small reactor with WMF for ZVI magnetization and a large reactor for removing contaminants by magnetized ZVI can be employed as a new method of ZVI-mediated remediation.展开更多
An artificial intelligence(AI)open-loop control system is developed to manipulate a turbulent boundary layer(TBL)over a flat plate,with a view to reducing friction drag.The system comprises six synthetic jets,two wall...An artificial intelligence(AI)open-loop control system is developed to manipulate a turbulent boundary layer(TBL)over a flat plate,with a view to reducing friction drag.The system comprises six synthetic jets,two wall-wire sensors,and genetic algorithm for the unsupervised learning of optimal control law.Each of the synthetic jets through rectangular streamwise slits can be independently controlled in terms of its exit velocity,frequency and actuation phase.Experiments are conducted at a momentum-thickness-based Reynolds number Re_(θ)of 1450.The local drag reduction downstream of the synthetic jets may reach 48%under conventional open-loop control.This local drag reduction rises to 60%,with an extended effective drag reduction area,under the AI control that finds optimized non-uniform forcing.The results point to the significant potential of AI in the control of a TBL given distributed actuation.展开更多
基金This work is supported by Collaborative Innovation Center of Suzhou Nano Science and Technology, Ministry of Science and Technology of China (No.2014CB932700), the National Natural Science Foundation of China (No.21603208, No.21573206, and No.51371164), the China Postdoctoral Science Foundation (No.2015M580536, No.2016T90569), Key Research Program of Frontier Sciences, CAS (QYZDBSSW- SLH017), Strategic Priority Research Program B of the CAS (No.XDB01020000), Hefei Science Center, CAS (No.2015HSC-UP016), and Fundamental Research Funds for the Central Universities.
文摘Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.
基金financially supported by National Basic Research Program of China(No.2012CB720400)the National Natural Science Foundation of China(No.51504216)
文摘The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: Fe O + FeTiO_3 → Fe_2 TiO_4 → FeTiO_3 → FeTi_2O_5 → TiO_2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 k J·mol^(-1).
基金the High Technology Research and Development Program of China(No.2011AA060803)the Beijing Key Laboratory Annual Program(No.Z121103009212039)
文摘Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the Natural Scientific Foundation of China(21776019)
文摘The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.
基金the National Natural Science Foundation of China
文摘The synthesis and spectroscopic characterization of cobalt(Ⅱ) 5-(4-pyridyl)-10,15,20-triphe- nylporphyrin,cobalt(Ⅱ) 5-(4-N-hexadecylpyridiniumyl)-10,15,20-triphenylporphyrin bromide and cobalt(Ⅱ) 5-(2-aminophenyl)-10,15,20-triphenyl-porphyrin are reported.The corresponding copper and vanadyl derivatives ((TriP)Cu,[(hTriP)Cu]^+Br^- and [(hTriP)VO]^+Br^-) were also studied.Each metalloporphyrin was characterized by UV-visible,ESR and ~1H NMR spectroscopy.These me- talloporphyrins can be firmly adsorbed on the glassy carbon (GC) surface.The catalytic reduction of dioxygen at GC electrodes modified by these catalysts was studied by cyclic voltammetry (CV).The kinetic process of dioxygen reduction at the cobalt porphyrin-modified electrodes was studied with a rotating ring disk electrode.
文摘The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on glass carbon electrode in both alkaline and acid solution. Catalytic activity of PCoPP goes through a maximum with increase of film thickness.A model was proposed to explain such dependence.The effect of film thickness and solution pH on the stability of PCoPP film was studied.
基金financially supported by the program for the National Natural Science Foundation of China (Nos. 51979044,42177045 and 42107053)the Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2019B151502023)+2 种基金Guangdong International Training Program for Outstanding Young Talentsthe China Postdoctoral Science Foundation (No. 2021M700878)Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health (No. 2020B1212030008)。
文摘The large consumption and discharge of diclofenac(DCF) lead to its frequent detection in surface water and groundwater, posing great threats to humans and ecosystems. This study explored the oxidation kinetics of DCF by permanganate(Mn(Ⅶ)), and expounded the underlying reason for the unusual p Hdependency that was unclear in previous studies. The kinetics of DCF analogues(i.e., aromatic secondary amines) by Mn(Ⅶ) oxidation were comparatively investigated. Then, a tentative kinetic model involving the formation of an intermediate between Mn(Ⅶ) and DCF or its analogues was proposed to fit the p H-rate profile. Since DCF contained two chloro groups, and a carboxyl group which could be ionized by negative electrospray ionization, a precursor ionization scanning approach was used for the first time for detection of N-containing chlorinated oxidation products. New degradation pathways of DCF containing ring opening, carboxylation, carbonylation, electrophilic addition, hydroxylation and dehydrogenation were proposed based on the identified oxidation products. Moreover, it was demonstrated that the introduction of various reducing agents such as Mn(Ⅱ), Fe(Ⅱ) and bisulfite significantly improved the oxidation kinetics of DCF by Mn(Ⅶ). The positive effects of Mn(Ⅱ) and Fe(Ⅱ) were mainly attributed to the accelerated formation of MnO_(2)that acted as a catalyst or co-oxidizer contributing to DCF degradation. The presence of bisulfite caused two-stage kinetics, where a sharp drop of DCF concentration followed by a slowdown of DCF removal. In the first stage, potent reactive manganese species(e.g., Mn(Ⅲ), Mn(V), and Mn(VI)) and sulfate radical were generated during reaction of bisulfite with Mn(Ⅶ), whereas bisulfite was depleted fast due to excess Mn(Ⅶ) concentrations and the system became the Mn(Ⅶ)/MnO_(2)system in the second stage. These results provide new insight into reaction mechanism of DCF with Mn(Ⅶ)as well as propose a feasible strategy for enhancing the treatment of DCF contaminated water by Mn(Ⅶ).
基金supported by the National Natural Science Foundation of China (Nos. 21277095, 51478329)the Specialized Research Fund for the Doctoral Program of Higher Education (20130072110026)the Tongji University Open Funding for Materials Characterization (No. 2013080)
文摘Weak magnetic field(WMF) was employed to improve the removal of Cr(VI) by zero-valent iron(ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a WMF, and the WMF-induced improvement was more remarkable at higher Cr(VI) concentration and higher p H. Fe2+was not detected until Cr(VI) was exhausted, and there was a positive correlation between the WMF-induced promotion factor of Cr(VI) removal rate and that of Fe2+release rate in the absence of Cr(VI) at pH 4.0-5.5. These phenomena imply that ZVI corrosion with Fe2+release was the limiting step in the process of Cr(VI) removal. The superimposed WMF had negligible influence on the apparent activation energy of Cr(VI) removal by ZVI, indicating that WMF accelerated Cr(VI)removal by ZVI but did not change the mechanism. The passive layer formed with WMF was much more porous than without WMF, thereby facilitating mass transport. Therefore,WMF could accelerate ZVI corrosion and alleviate the detrimental effects of the passive layer, resulting in more rapid removal of Cr(VI) by ZVI. Exploiting the magnetic memory of ZVI, a two-stage process consisting of a small reactor with WMF for ZVI magnetization and a large reactor for removing contaminants by magnetized ZVI can be employed as a new method of ZVI-mediated remediation.
基金YZ wishes to acknowledge support given to him from the National Natural Science Foundation of China(Grants 11632006,91952204)the Research Grants Council of Shenzhen Government(Grant JCYJ20190806143611025).
文摘An artificial intelligence(AI)open-loop control system is developed to manipulate a turbulent boundary layer(TBL)over a flat plate,with a view to reducing friction drag.The system comprises six synthetic jets,two wall-wire sensors,and genetic algorithm for the unsupervised learning of optimal control law.Each of the synthetic jets through rectangular streamwise slits can be independently controlled in terms of its exit velocity,frequency and actuation phase.Experiments are conducted at a momentum-thickness-based Reynolds number Re_(θ)of 1450.The local drag reduction downstream of the synthetic jets may reach 48%under conventional open-loop control.This local drag reduction rises to 60%,with an extended effective drag reduction area,under the AI control that finds optimized non-uniform forcing.The results point to the significant potential of AI in the control of a TBL given distributed actuation.