期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Dynamic self-adaptive ANP algorithm and its application to electric field simulation of aluminum reduction cell 被引量:1
1
作者 王雅琳 陈冬冬 +2 位作者 陈晓方 蔡国民 阳春华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4731-4739,共9页
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ... Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance. 展开更多
关键词 finite element parallel computing(FEPC) region partition(RP) dynamic self-adaptive ANP(DSA-ANP) algorithm electric field simulation aluminum reduction cell(ARC)
下载PDF
THE NUMERICAL SIMULATION OF FLOW IN ALUMINUM REDUCTION CELLS 被引量:1
2
作者 Zhuang Ye-gao Zhang Qi-de, Department of Mechanics, Huazhong University of Scieuce and Technology, Wuhan 430074, P. R. China 《Journal of Hydrodynamics》 SCIE EI CSCD 1991年第1期11-15,共5页
The electromagnetic force causes a circulation of both cryolite and the metal in the aluminum reduction cells. This motion has the effect of reducing the current efficiency of the cell, and increases the distance betw... The electromagnetic force causes a circulation of both cryolite and the metal in the aluminum reduction cells. This motion has the effect of reducing the current efficiency of the cell, and increases the distance between the an- ode and the cathode. Using the time-averaged Navier-Stokes equations and the K-e model of turbulence this paper numerically calculated the distributions of velocities, pressure, turbulent kinetic energy in the cells and deforma- tion of the interface of cryolite and metal. These results may be used to control the process of production and to improve the design of the cells. 展开更多
关键词 PR FLOW THE NUMERICAL SIMULATION OF FLOW IN ALUMINUM reduction cellS
原文传递
Modeling of Three-Phase Flow and Interface Deformation of Metal/Bath in Aluminum Reduction Cell With Cathode Protrusion
3
作者 WANG Qiang WANG Fang +1 位作者 LI Bao-kuan FENG Nai-xiang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第S1期59-62,共4页
Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed t... Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed to study the impact of the novel cathode protrusion on the molten fluid motion as well as the metal-bath interface deformation.The molten fluid motion in the aluminum reduction ceils is under the combined effect of the electro-magnetic forces(EMFs)and the gas bubbles generated at the anode.A transient inhomogeneous three-phase model(metal-bath-gas bubble)was established in order to calculate more accurate.The results indicate that the metal-bath interface deformation can be reduced significantly by the novel cathode protrusion which is beneficial to the electric energy saving.Besides,The EMFs decreases as a result of the optimizing of the magnetic field due to the novel cathode convex which is an important driving force for the deformation of the interface.In addition,large vortex in the metal flow field is break up into the small vortex by the cathode protrusion and then dissipated due to the viscous force and the hindering effect of the cathode protrusion.The quantity of the vortex as well as the strength of the vortex reduces significantly in the reduction cell with novel cathode protrusion. 展开更多
关键词 aluminum reduction cell novel cathode protrusion inhomogeneous three-phase flow interface deformation electro-magnetic forces VORTEX
原文传递
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
4
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
下载PDF
Colloidal Alumina-bonded TiB_2 Coating on Cathode Carbon Blocks in Aluminum Cells
5
作者 Huimin Lu, Lanlan Yu, Chao Wang, Peng Sun (Department of Nonferrous Metallurgy, University of Science and Teclmology Beijing, Beijing 100083, China) 《Rare Metals》 SCIE EI CAS CSCD 2001年第2期101-106,共6页
Self-propagating high-temperature synthesis (SHS) with reduction process was used to fabricate TiB2 powder from TiO2-B2O3-Mg system. The colloidal alumina-bonded TiB2 paste was prepared and coated on the cathode carbo... Self-propagating high-temperature synthesis (SHS) with reduction process was used to fabricate TiB2 powder from TiO2-B2O3-Mg system. The colloidal alumina-bonded TiB2 paste was prepared and coated on the cathode carbon blocks. Various properties of the baked paste such as the corrosive resistance, thermal expansion and wettability were tested. Experimental results showed that the colloidal alumina-bonded TiB2 coating could be well wetted by liquid aluminum; and the thermal expansion coefficient of the coated material was 5.8x10(-6) degreesC(-1) at 20-1000 degreesC, which was close to that of the traditional anthracite block cathode (4x10(-6) degreesC(-1)); the electrical resistivity was 8 mu Omega (.)m at 900 degreesC when the content of alumina in the coated material was about 9% in mass fraction. In addition, some other good results such as sodium resistance were also reported. 展开更多
关键词 self-propagating high-temperature synthesis reduction process colloidal alumina-bonded TiB2 coating carbon CATHODE aluminum reduction cell
下载PDF
Bio-inspired carbon electro-catalysts for the oxygen reduction reaction 被引量:3
6
作者 Kathrin Preuss Vasanth Kumar Kannuchamy +4 位作者 Adam Marinovic Mark Isaacs Karen Wilson Isaac Abrahams Maria-Magdalena Titirici 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期226-233,共8页
We report the synthesis, characterisation and catalytic performance of two nature-inspired biomassderived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of... We report the synthesis, characterisation and catalytic performance of two nature-inspired biomassderived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste(lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon(23%), nitrogen and sulphur(〈1%), limiting the surface area to 23 m^2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m^2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s. 展开更多
关键词 Carbonisation Biomass-derived carbons Oxygen reduction reaction Fuel cells Electro-catalysis
下载PDF
针灸作用机制研究的困惑与出路--针灸调节肠易激综合征肠功能机制研究的系统科学思考 被引量:2
7
作者 陈少宗 刘保延 +2 位作者 兰天 张丽丽 曾以德 《山东中医药大学学报》 2022年第4期429-434,共6页
以还原论为主体的研究方法在针刺作用机制探索过程中发挥了巨大作用,但该方法也存在明显的局限性,以针灸调节肠易激综合征(IBS)肠功能机制研究为例,对此进行了反思。认为针灸治疗IBS机制的探索涉及范围广泛、层次多样,但获得的认识多是... 以还原论为主体的研究方法在针刺作用机制探索过程中发挥了巨大作用,但该方法也存在明显的局限性,以针灸调节肠易激综合征(IBS)肠功能机制研究为例,对此进行了反思。认为针灸治疗IBS机制的探索涉及范围广泛、层次多样,但获得的认识多是碎片化的,缺乏对众多环节间相互作用和相互协调的了解。为弥补还原论方法的不足,从系统科学角度探索针灸的作用机制是一种必然的趋势,从系统生物学的角度,特别是从细胞行为组学角度对针灸调节机制的研究思路及其可行性进行探讨,提出了一是基于“中枢神经系统-自主神经系统-胃肠道神经-Cajal间质细胞-平滑肌细胞(CNS-ANS-ENS-ICC-SMC)网络”细胞行为组学的研究,二是基于肠道类器官多种细胞行为组学的研究,以期将针灸调节规律及其机制的认识推进到更深的层次。 展开更多
关键词 针灸作用机制 碎片化信息 还原论 系统科学 系统生物学 细胞行为组学 肠易激综合征
下载PDF
解读系统生物学:还原论与整体论的综合 被引量:14
8
作者 桂起权 《自然辩证法通讯》 CSSCI 北大核心 2015年第5期1-7,共7页
系统生物学的最终目的是解析生命的复杂性。它是21世纪初科学革命的产物,出现于代谢通路理论、生物控制论和各种"组学"的多学科交叉点上,是非线性的"学科整合"的结果。从科学哲学观点看,单纯的还原论与整体论各有... 系统生物学的最终目的是解析生命的复杂性。它是21世纪初科学革命的产物,出现于代谢通路理论、生物控制论和各种"组学"的多学科交叉点上,是非线性的"学科整合"的结果。从科学哲学观点看,单纯的还原论与整体论各有局限性,而还原论与整体论的融合则构成系统生物学的哲学基础。"硅细胞"模型表明,计算机模拟和数值实验是系统生物学的有力的方法论工具,提供了揭开生命复杂性之谜的钥匙。生命的涌现性质,是按线性叠加方式是不可计算、不可预测的,却是按非线性叠加方式却是有条件地可计算、可预测的。系统生物学的出现,有力地确证了"系统科学=生物学理论背后的元理论"的观点。 展开更多
关键词 系统生物学 还原论与整体论“硅细胞”模型 涌现 系统科学是生物学的元理论
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部