Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activit...Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activity.However,the effect of the local coordination environment of Co sites on CO_(2) reduction reaction pathways is still unclear.In this study,we investigated the CO_(2) reduction reaction pathways on Co‐N_(4) sites supported on conjugated N_(4)‐macrocyclic ligands with 1,10‐phenanthroline subunits(Co‐N_(4)‐CPY)by density functional theory calculations.The local coordination environment of single‐atom Co sites with N substituted by O(Co‐N_(3)O‐CPY)and C(Co‐N_(3)C‐CPY)was studied for comparison.The calculation results revealed that both C and O coordination break the symmetry of the primary CoN_(4) ligand field and induce charge redistribution of the Co atom.For Co‐N_(4)‐CPY,CO was confirmed to be the main product of CO_(2)RR.HCOOH is the primary product of Co‐N_(3)O‐CPY because of the greatly increased energy barrier of CO_(2) to*COOH.Although the energy barrier of CO_(2) to*COOH is reduced on Co‐N_(3)C‐CPY,the desorption process of*CO becomes more difficult.CH3OH(or CH_(4))are obtained by further*CO hydrogenation reduction when using Co‐N_(3)C‐CPY.This work provides new insight into the effect of the local coordination environment of single‐atom sites on CO_(2) reduction reaction pathways.展开更多
文摘Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activity.However,the effect of the local coordination environment of Co sites on CO_(2) reduction reaction pathways is still unclear.In this study,we investigated the CO_(2) reduction reaction pathways on Co‐N_(4) sites supported on conjugated N_(4)‐macrocyclic ligands with 1,10‐phenanthroline subunits(Co‐N_(4)‐CPY)by density functional theory calculations.The local coordination environment of single‐atom Co sites with N substituted by O(Co‐N_(3)O‐CPY)and C(Co‐N_(3)C‐CPY)was studied for comparison.The calculation results revealed that both C and O coordination break the symmetry of the primary CoN_(4) ligand field and induce charge redistribution of the Co atom.For Co‐N_(4)‐CPY,CO was confirmed to be the main product of CO_(2)RR.HCOOH is the primary product of Co‐N_(3)O‐CPY because of the greatly increased energy barrier of CO_(2) to*COOH.Although the energy barrier of CO_(2) to*COOH is reduced on Co‐N_(3)C‐CPY,the desorption process of*CO becomes more difficult.CH3OH(or CH_(4))are obtained by further*CO hydrogenation reduction when using Co‐N_(3)C‐CPY.This work provides new insight into the effect of the local coordination environment of single‐atom sites on CO_(2) reduction reaction pathways.