The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge...The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
BACKGROUND Depression is a common and serious psychological condition,which seriously affects individual well-being and functional ability.Traditional treatment methods include drug therapy and psychological counselin...BACKGROUND Depression is a common and serious psychological condition,which seriously affects individual well-being and functional ability.Traditional treatment methods include drug therapy and psychological counseling;however,these methods have different degrees of side effects and limitations.In recent years,nonconvulsive electrotherapy(NET)has attracted increasing attention as a noninvasive treatment method.However,the clinical efficacy and potential mechanism of NET on depression are still unclear.We hypothesized that NET has a positive clinical effect in the treatment of depression,and may have a regulatory effect on serum inflammatory factors during treatment.AIM To assess the effects of NET on depression and analyze changes in serum inflammatory factors.METHODS This retrospective study enrolled 140 patients undergoing treatment for depression between May 2017 and June 2022,the observation group that received a combination of mindfulness-based stress reduction(MBSR)and NET treatment(n=70)and the control group that only received MBSR therapy(n=70).The clinical effectiveness of the treatment was evaluated by assessing various factors,including the Hamilton Depression Scale(HAMD)-17,self-rating idea of suicide scale(SSIOS),Pittsburgh Sleep Quality Index(PSQI),and levels of serum inflammatory factors before and after 8 wk of treatment.The quality of life scores between the two groups were compared.Comparisons were made using t and χ^(2) tests.RESULTS After 8 wk of treatment,the observation group exhibited a 91.43%overall effectiveness rate which was higher than that of the control group which was 74.29%(64 vs 52,χ^(2)=7.241;P<0.05).The HAMD,SSIOS,and PSQI scores showed a significant decrease in both groups.Moreover,the observation group had lower scores than the control group(10.37±2.04 vs 14.02±2.16,t=10.280;1.67±0.28 vs 0.87±0.12,t=21.970;5.29±1.33 vs 7.94±1.35,t=11.700;P both<0.001).Additionally,there was a notable decrease in the IL-2,IL-1β,and IL-6 in both groups after treatment.Furthermore,the observation group exhibited superior serum inflammatory factors compared to the control group(70.12±10.32 vs 102.24±20.21,t=11.840;19.35±2.46 vs 22.27±2.13,t=7.508;32.25±4.6 vs 39.42±4.23,t=9.565;P both<0.001).Moreover,the observation group exhibited significantly improved quality of life scores compared to the control group(Social function:19.25±2.76 vs 16.23±2.34;Emotions:18.54±2.83 vs 12.28±2.16;Environment:18.49±2.48 vs 16.56±3.44;Physical health:19.53±2.39 vs 16.62±3.46;P both<0.001)after treatment.CONCLUSION MBSR combined with NET effectively alleviates depression,lowers inflammation(IL-2,IL-1β,and IL-6),reduces suicidal thoughts,enhances sleep,and improves the quality of life of individuals with depression.展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect...Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca...Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.展开更多
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinea...Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modem seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual 'R' value for engineered design/construction of reinforced concrete (RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.展开更多
To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records...To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-p-T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.展开更多
Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,su...Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields.展开更多
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst...Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the sy...Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence ofinfill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.展开更多
Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m...Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.展开更多
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ...The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.展开更多
Seismic force reduction factor(SFRF) spectra of shear-type multi-degree-of-freedom(MDOF) structures are investigated. The modified Clough model, capable of considering the strength-degradation/hardening and stiffnessd...Seismic force reduction factor(SFRF) spectra of shear-type multi-degree-of-freedom(MDOF) structures are investigated. The modified Clough model, capable of considering the strength-degradation/hardening and stiffnessdegradation, is adopted. The SFRF mean spectra using 102 earthquake records on a typical site soil type(type C) are constructed with the period abscissa being divided into three period ranges to maintain the peak features at the two sitespecific characteristic periods. Based on a large number of results, it is found that the peak value of SFRF spectra may also exist for MDOF, induced by large high-mode contributions to elastic base shear, besides the mentioned two peak values. The variations of the stiffness ratio λk and the strength ratio λF of the top to bottom story are both considered. It is found that the SFRFs for λF ≤λk are smaller than those for λF > λk. A SFRF modification factor for MDOF systems is proposed with respect to SDOF. It is found that this factor is significantly affected by the story number and ductility. With a specific λF(= λk0.75), SFRF mean spectra are constructed and simple solutions are presented for MDOF systems. For frames satisfying the strong column/weak beam requirement, an approximate treatment in the MDOF shear-beam model is to assign a post-limit stiffness 15%-35% of the initial stiffness to the hysteretic curve. SFRF spectra for MDOF systems with 0.2 and 0.3 times the post-limit stiffness are remarkably larger than those without post-limit stiffness. Thus, the findings that frames with beam hinges have smaller ductility demand are explained through the large post-limit stiffness.展开更多
文摘The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.
基金Supported by Guangdong Provincial Medical Scientific Research Fund Project,No.B2016109.
文摘BACKGROUND Depression is a common and serious psychological condition,which seriously affects individual well-being and functional ability.Traditional treatment methods include drug therapy and psychological counseling;however,these methods have different degrees of side effects and limitations.In recent years,nonconvulsive electrotherapy(NET)has attracted increasing attention as a noninvasive treatment method.However,the clinical efficacy and potential mechanism of NET on depression are still unclear.We hypothesized that NET has a positive clinical effect in the treatment of depression,and may have a regulatory effect on serum inflammatory factors during treatment.AIM To assess the effects of NET on depression and analyze changes in serum inflammatory factors.METHODS This retrospective study enrolled 140 patients undergoing treatment for depression between May 2017 and June 2022,the observation group that received a combination of mindfulness-based stress reduction(MBSR)and NET treatment(n=70)and the control group that only received MBSR therapy(n=70).The clinical effectiveness of the treatment was evaluated by assessing various factors,including the Hamilton Depression Scale(HAMD)-17,self-rating idea of suicide scale(SSIOS),Pittsburgh Sleep Quality Index(PSQI),and levels of serum inflammatory factors before and after 8 wk of treatment.The quality of life scores between the two groups were compared.Comparisons were made using t and χ^(2) tests.RESULTS After 8 wk of treatment,the observation group exhibited a 91.43%overall effectiveness rate which was higher than that of the control group which was 74.29%(64 vs 52,χ^(2)=7.241;P<0.05).The HAMD,SSIOS,and PSQI scores showed a significant decrease in both groups.Moreover,the observation group had lower scores than the control group(10.37±2.04 vs 14.02±2.16,t=10.280;1.67±0.28 vs 0.87±0.12,t=21.970;5.29±1.33 vs 7.94±1.35,t=11.700;P both<0.001).Additionally,there was a notable decrease in the IL-2,IL-1β,and IL-6 in both groups after treatment.Furthermore,the observation group exhibited superior serum inflammatory factors compared to the control group(70.12±10.32 vs 102.24±20.21,t=11.840;19.35±2.46 vs 22.27±2.13,t=7.508;32.25±4.6 vs 39.42±4.23,t=9.565;P both<0.001).Moreover,the observation group exhibited significantly improved quality of life scores compared to the control group(Social function:19.25±2.76 vs 16.23±2.34;Emotions:18.54±2.83 vs 12.28±2.16;Environment:18.49±2.48 vs 16.56±3.44;Physical health:19.53±2.39 vs 16.62±3.46;P both<0.001)after treatment.CONCLUSION MBSR combined with NET effectively alleviates depression,lowers inflammation(IL-2,IL-1β,and IL-6),reduces suicidal thoughts,enhances sleep,and improves the quality of life of individuals with depression.
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
文摘Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by the National Natural Science Foundation of China (22178149)Jiangsu Distinguished Professor Program+4 种基金Natural Science Foundation of Jiangsu Province for Outstanding Youth Scientists (BK20211599)Key R and D Project of Zhenjiang City (CQ2022001)Scientific Research Startup Foundation of Jiangsu University (Nos. 202096 and 22JDG020)Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment of Fuzhou University (SKLPEE-KF202310)the Opening Project of Structural Optimization and Application of Functional Molecules Key Laboratory of Sichuan Province (2023GNFZ-01)。
文摘Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
基金supported by the Eurasian University Network for International Cooperation in Earthquake (EU-NICE)
文摘Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modem seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual 'R' value for engineered design/construction of reinforced concrete (RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.
基金Foundation for Research and Science and Technology of New Zealand, Contract Number: C05X0208 and C05X0301the Foundation for Western Transportation Science and Technology Research, Contract No. 200831800098
文摘To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors (R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-p-T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.
基金This study was financially supported by the National Natural Science Foundation of China(Grant/Award Number:22232004,22272179,21972068,and 22072067).
文摘Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields.
基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Numbers:2021A1515110245,2022A1515140108,2023B1515040013National Youth Top-notch Talent Support Program,Grant/Award Number:x2qsA4210090+5 种基金Guangzhou Key Research and Development Program,Grant/Award Number:SL2022B03J01256Guangdong Provincial Key Laboratory of Distributed Energy Systems,Grant/Award Number:2020B1212060075Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes,Grant/Award Number:2016GCZX009State Key Laboratory of Pulp and Paper Engineering,Grant/Award Numbers:202215,2022PY02Key projects of social science and technology development in Dongguan,Grant/Award Number:20231800936352National Natural Science Foundation of China,Grant/Award Numbers:21736003,21905044,31971614,32071714。
文摘Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
基金The financial support of the Ministry of the Instruction, University and Research of Italy (MIUR)
文摘Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence ofinfill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.
基金supported by the Platform Development Foundation of the China Institute for Radiation Protection(No.YP21030101)the National Natural Science Foundation of China(General Program)(Nos.12175114,U2167209)+1 种基金the National Key R&D Program of China(No.2021YFF0603600)the Tsinghua University Initiative Scientific Research Program(No.20211080081).
文摘Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF,2021R1C1C1013953,2022K1A4A7A04094394,2022K1A4A7A04095890)。
文摘The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.
基金Supported by:National Key Research and Development Program of China under Grant No.2016YFC0701201
文摘Seismic force reduction factor(SFRF) spectra of shear-type multi-degree-of-freedom(MDOF) structures are investigated. The modified Clough model, capable of considering the strength-degradation/hardening and stiffnessdegradation, is adopted. The SFRF mean spectra using 102 earthquake records on a typical site soil type(type C) are constructed with the period abscissa being divided into three period ranges to maintain the peak features at the two sitespecific characteristic periods. Based on a large number of results, it is found that the peak value of SFRF spectra may also exist for MDOF, induced by large high-mode contributions to elastic base shear, besides the mentioned two peak values. The variations of the stiffness ratio λk and the strength ratio λF of the top to bottom story are both considered. It is found that the SFRFs for λF ≤λk are smaller than those for λF > λk. A SFRF modification factor for MDOF systems is proposed with respect to SDOF. It is found that this factor is significantly affected by the story number and ductility. With a specific λF(= λk0.75), SFRF mean spectra are constructed and simple solutions are presented for MDOF systems. For frames satisfying the strong column/weak beam requirement, an approximate treatment in the MDOF shear-beam model is to assign a post-limit stiffness 15%-35% of the initial stiffness to the hysteretic curve. SFRF spectra for MDOF systems with 0.2 and 0.3 times the post-limit stiffness are remarkably larger than those without post-limit stiffness. Thus, the findings that frames with beam hinges have smaller ductility demand are explained through the large post-limit stiffness.