As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a cruc...As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.展开更多
From the advanced experiences at home and abroad,according to the requirements of emergency evacuation at earthquake disaster,then strategies and methods to disaster prevention and reduction functions of urban green l...From the advanced experiences at home and abroad,according to the requirements of emergency evacuation at earthquake disaster,then strategies and methods to disaster prevention and reduction functions of urban green land construction were put forward.展开更多
The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of envi...The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of environmental management in China. The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the important strategies of environmental management in China. Based on the systematic collection of 1,195 energy conservation emission reduction policies, we discuss the influence of individual measure and measure synergy of energy conservation and emission reduction policies respectively. The results show that the energy conservation and emission reduction policies have a significant effect on the overall promotion of industrial upgrading. The financial measures and guidance measures have a positive impact;the financial measures and guidance measures have significantly positive effect; however, the administrative measures, fiscal tax measures, and other economic measures do the opposite; the positive effect of the synergy of guidance measures and financial measures is greater than the negative effect of considering only the synergy of fiscal tax measures and other economic measures, and significantly greater than the negative effect of the synergy of administrative measures, fiscal tax measures, and other economic measures. We should strengthen and emphasize the use of the measure that has positive effect on industrial structure restructuring and upgrading individually and synergistically.展开更多
Aerodynamic drag is proportional to the square of speed. With the increase of the speed of train, aerodynamic drag plays an important role for high-speed train. Thus, the reduction of aerodynamic drag and energy consu...Aerodynamic drag is proportional to the square of speed. With the increase of the speed of train, aerodynamic drag plays an important role for high-speed train. Thus, the reduction of aerodynamic drag and energy consumption of high-speed train is one of the essential issues for the development of the desirable train system. Aerodynamic drag on the traveling train is divided into pressure drag and friction one. Pressure drag of train is the force caused by the pressure distribution on the train along the reverse running direction. Friction drag of train is the sum of shear stress, which is the reverse direction of train running direction. In order to reduce the aerodynamic drag, adopting streamline shape of train is the most effective measure. The velocity of the train is related to its length and shape. The outer wind shields can reduce train's air drag by about 15%. At the same time, the train with bottom cover can reduce the air drag by about 50%, compared with the train without bottom plate or skirt structure.展开更多
Based on seven carbon sources including chemical fertilizer, pesticide, agricultural film, nitrogen fertilization, agricultural machinery, irri- gation and straw burning, the carbon emissions in agricultural productio...Based on seven carbon sources including chemical fertilizer, pesticide, agricultural film, nitrogen fertilization, agricultural machinery, irri- gation and straw burning, the carbon emissions in agricultural production of China during 1995-2011 was calculated. The results showed that both total agricultural carbon emission and per capita agricultural carbon emission overall presented growth trends, and the growth rate began to slow in recent years. The agricultural carbon emission intensity decreased year by year. Straw burning was the primary carbon source in China's agricul- ture, followed by chemical fertilizer. Total agricultural carbon emission in China in 17 years experienced three stages of "fluctuated growth -slow drop-new growth". Finally, suggestions and countermeasures of the low-carbon agriculture development in China from three aspects were proposed.展开更多
Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparat...Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparatively with the decomposition analysis method.Empirical results demonstrate that the decomposition models of carbon emissions can be defined as "municipality model" and "provincial model",and the population factor of "municipal model" plays a significant role in carbon emissions than that of "provincial model".Either positive or negative effects of energy structure can be found in five different areas.However,there is a general trend that energy structure effort is becoming more and more important.Based on the characteristics and trends of carbon emissions in different areas,the carbon reduction measures are proposed as well.展开更多
Effect of different noise reduction measures for diesel engines was evaluated based on hierarchy diagnosis. The hierarchy diagnosis chart and hierarchy judgment matrix were given. Through evaluation of noise reduction...Effect of different noise reduction measures for diesel engines was evaluated based on hierarchy diagnosis. The hierarchy diagnosis chart and hierarchy judgment matrix were given. Through evaluation of noise reduction measures, the main strategies of noise reduction were found. The result shows that the noise reduction level of different frequency belts varies from measure to measure. The reduction capacity of different measures could not add simply, which relates to the problem of parameter matching.展开更多
In using risk-informed approaches for ensuring safety of operating NPPs(nuclear power plants),risk importance measures obtained from PRAs(probabilistic risk assessments)of the plants are integral elements of considera...In using risk-informed approaches for ensuring safety of operating NPPs(nuclear power plants),risk importance measures obtained from PRAs(probabilistic risk assessments)of the plants are integral elements of consideration in many cases.In PSA models and applications associated with NPPs the risk importance of a particular feature(e.g.function,system,component,failure mode or operator action)can be,most generally,divided into two categories:importance with respect to risk increase potential and importance with respect to risk decrease potential.The representative of the first category,as used for practical purposes,is RAW(risk achievement worth).Representative of the second category,as mentioned in consideration of risk importance,is RRW(risk reduction worth).It can be shown that the two risk importance measures,RAW and RRW,are dependent on each other.The only parameter in this mutual dependency is probability of failure of the considered feature.The paper discusses the relation between RAW and RRW and some of its implications,including those on the general strategies for the reduction of risk imposed for the operation of the considered facility.Two general risk reduction strategies which are considered in the discussion are:a)risk reduction by decreasing the failure probability of the considered feature;and b)risk reduction while keeping the failure probability of the considered feature at the same level.Simple examples are provided to illustrate the differences between two strategies and point to main issues and conclusions.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
In order to improve the level of livestock and poultry breeding pollution control,fulfill the requirements of pollution reduction and complete total emission reduction target of main pollutants in Jilin Province,based...In order to improve the level of livestock and poultry breeding pollution control,fulfill the requirements of pollution reduction and complete total emission reduction target of main pollutants in Jilin Province,based on the analysis of livestock and poultry breeding excrement characteristics,the current main problems existing in the management are deeply studied,and it puts forward the technique model suitable for livestock and poultry breeding pollution governance in Jilin Province,which is one of the important means to solve the rural environment pollution in Jilin Province.展开更多
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca...Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m...Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.展开更多
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ...The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.展开更多
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)...Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.展开更多
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me...The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.展开更多
文摘As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.
文摘From the advanced experiences at home and abroad,according to the requirements of emergency evacuation at earthquake disaster,then strategies and methods to disaster prevention and reduction functions of urban green land construction were put forward.
文摘The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of environmental management in China. The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the important strategies of environmental management in China. Based on the systematic collection of 1,195 energy conservation emission reduction policies, we discuss the influence of individual measure and measure synergy of energy conservation and emission reduction policies respectively. The results show that the energy conservation and emission reduction policies have a significant effect on the overall promotion of industrial upgrading. The financial measures and guidance measures have a positive impact;the financial measures and guidance measures have significantly positive effect; however, the administrative measures, fiscal tax measures, and other economic measures do the opposite; the positive effect of the synergy of guidance measures and financial measures is greater than the negative effect of considering only the synergy of fiscal tax measures and other economic measures, and significantly greater than the negative effect of the synergy of administrative measures, fiscal tax measures, and other economic measures. We should strengthen and emphasize the use of the measure that has positive effect on industrial structure restructuring and upgrading individually and synergistically.
基金Project(2001AA505000) supported by the National High-Tech Research and Development of China
文摘Aerodynamic drag is proportional to the square of speed. With the increase of the speed of train, aerodynamic drag plays an important role for high-speed train. Thus, the reduction of aerodynamic drag and energy consumption of high-speed train is one of the essential issues for the development of the desirable train system. Aerodynamic drag on the traveling train is divided into pressure drag and friction one. Pressure drag of train is the force caused by the pressure distribution on the train along the reverse running direction. Friction drag of train is the sum of shear stress, which is the reverse direction of train running direction. In order to reduce the aerodynamic drag, adopting streamline shape of train is the most effective measure. The velocity of the train is related to its length and shape. The outer wind shields can reduce train's air drag by about 15%. At the same time, the train with bottom cover can reduce the air drag by about 50%, compared with the train without bottom plate or skirt structure.
文摘Based on seven carbon sources including chemical fertilizer, pesticide, agricultural film, nitrogen fertilization, agricultural machinery, irri- gation and straw burning, the carbon emissions in agricultural production of China during 1995-2011 was calculated. The results showed that both total agricultural carbon emission and per capita agricultural carbon emission overall presented growth trends, and the growth rate began to slow in recent years. The agricultural carbon emission intensity decreased year by year. Straw burning was the primary carbon source in China's agricul- ture, followed by chemical fertilizer. Total agricultural carbon emission in China in 17 years experienced three stages of "fluctuated growth -slow drop-new growth". Finally, suggestions and countermeasures of the low-carbon agriculture development in China from three aspects were proposed.
基金Project supported by the Twelfth Five-Year-Plan on Energy Conservation in Shanghai Colleges and Universitiesthe Shanghai Low-Carbon City Development Project
文摘Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparatively with the decomposition analysis method.Empirical results demonstrate that the decomposition models of carbon emissions can be defined as "municipality model" and "provincial model",and the population factor of "municipal model" plays a significant role in carbon emissions than that of "provincial model".Either positive or negative effects of energy structure can be found in five different areas.However,there is a general trend that energy structure effort is becoming more and more important.Based on the characteristics and trends of carbon emissions in different areas,the carbon reduction measures are proposed as well.
基金Supported by China Postdoctoral Science Foundation (No.20060400193)Yunnan Foundation for Science and Technology Cooperation between Government and University(No.2003HBBAA02A049) .
文摘Effect of different noise reduction measures for diesel engines was evaluated based on hierarchy diagnosis. The hierarchy diagnosis chart and hierarchy judgment matrix were given. Through evaluation of noise reduction measures, the main strategies of noise reduction were found. The result shows that the noise reduction level of different frequency belts varies from measure to measure. The reduction capacity of different measures could not add simply, which relates to the problem of parameter matching.
文摘In using risk-informed approaches for ensuring safety of operating NPPs(nuclear power plants),risk importance measures obtained from PRAs(probabilistic risk assessments)of the plants are integral elements of consideration in many cases.In PSA models and applications associated with NPPs the risk importance of a particular feature(e.g.function,system,component,failure mode or operator action)can be,most generally,divided into two categories:importance with respect to risk increase potential and importance with respect to risk decrease potential.The representative of the first category,as used for practical purposes,is RAW(risk achievement worth).Representative of the second category,as mentioned in consideration of risk importance,is RRW(risk reduction worth).It can be shown that the two risk importance measures,RAW and RRW,are dependent on each other.The only parameter in this mutual dependency is probability of failure of the considered feature.The paper discusses the relation between RAW and RRW and some of its implications,including those on the general strategies for the reduction of risk imposed for the operation of the considered facility.Two general risk reduction strategies which are considered in the discussion are:a)risk reduction by decreasing the failure probability of the considered feature;and b)risk reduction while keeping the failure probability of the considered feature at the same level.Simple examples are provided to illustrate the differences between two strategies and point to main issues and conclusions.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金Supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2012ZX07202-009-02)
文摘In order to improve the level of livestock and poultry breeding pollution control,fulfill the requirements of pollution reduction and complete total emission reduction target of main pollutants in Jilin Province,based on the analysis of livestock and poultry breeding excrement characteristics,the current main problems existing in the management are deeply studied,and it puts forward the technique model suitable for livestock and poultry breeding pollution governance in Jilin Province,which is one of the important means to solve the rural environment pollution in Jilin Province.
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
基金supported by the National Natural Science Foundation of China (22178149)Jiangsu Distinguished Professor Program+4 种基金Natural Science Foundation of Jiangsu Province for Outstanding Youth Scientists (BK20211599)Key R and D Project of Zhenjiang City (CQ2022001)Scientific Research Startup Foundation of Jiangsu University (Nos. 202096 and 22JDG020)Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment of Fuzhou University (SKLPEE-KF202310)the Opening Project of Structural Optimization and Application of Functional Molecules Key Laboratory of Sichuan Province (2023GNFZ-01)。
文摘Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
基金supported by the Platform Development Foundation of the China Institute for Radiation Protection(No.YP21030101)the National Natural Science Foundation of China(General Program)(Nos.12175114,U2167209)+1 种基金the National Key R&D Program of China(No.2021YFF0603600)the Tsinghua University Initiative Scientific Research Program(No.20211080081).
文摘Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF,2021R1C1C1013953,2022K1A4A7A04094394,2022K1A4A7A04095890)。
文摘The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.
基金financial support from the National Natural Science Foundation of China(No.22272038)the Science and Technology Planning Project of Guangzhou City(No.2023A03J0026)。
文摘Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.
基金funded by the National Natural Science Foundation of China,China (Nos.52272303 and 52073212)the General Program of Municipal Natural Science Foundation of Tianjin,China (Nos.17JCYBJC22700 and 17JCYBJC17000)the State Scholarship Fund of China Scholarship Council,China (Nos.201709345012 and 201706255009)。
文摘The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.