This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cycli...Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.展开更多
Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a rea...Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.展开更多
Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloadin...Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloading/reloading stage that is dominated by a tangent stiffness,thus structural components remain residual deformations but behave in an elastic manner.It has a great potential to make model order reduction for such structural components using the tangent-stiffness-based vibration modes as a reduced order basis.In this paper,an adaptive substructure-based model order reduction method is developed to perform nonlinear seismic analysis for structures that have a priori unknown damage distribution.This method is able to generate time-varying substructures and make nonlinear model order reduction for substructures in the residual-elastic phase.The finite element program OpenSees has been extended to provide the adaptive substructure-based nonlinear seismic analysis.At the low level of OpenSees framework,a new abstract layer is created to represent the time-varying substructures and implement the modeling process of substructures.At the high level of OpenSees framework,a new transient analysis class is created to implement the solving process of substructure-based governing equations.Compared with the conventional time step integration method,the adaptive substructure-based model order reduction method can yield comparative results with a higher computational efficiency.展开更多
Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Sys...Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Systems) etc., in order to shorten the development cost, increase the system co ntrolling accuracy and reduce the complexity of controllers, the reduced order model must be constructed. Even in Virtual Reality (VR), the simulation and d isplay must be in real-time, the model order must be reduced too. The recent advances of MOR research are overviewed in the article. The MOR theor y and methods may be classified as Singular Value decomposition (SVD) based, the Krylov subspace based and others. The merits and demerits of the different meth ods are analyzed, and the existed problems are pointed out. Moreover, the applic ation’s fields are overviewed, and the potential applications are forecaste d. After the existed problems analyzed, the future work is described. There are som e problems in the traditional methods such as SVD and Krylov subspace, they are that it’s difficult to (1)guarantee the stability of the original system, (2) b e adaptive to nonlinear system, and (3) control the modeling accuracy. The f uture works may be solving the above problems on the foundation of the tradition al methods, and applying other methods such as wavelet or signal compression.展开更多
Numerical solutions could not perform rapid system-level simulation of the behavior of micro-electro-mechanical systems(MEMS) and analytic solutions for the describing partial differential equations are only availab...Numerical solutions could not perform rapid system-level simulation of the behavior of micro-electro-mechanical systems(MEMS) and analytic solutions for the describing partial differential equations are only available for simple geometries.Model order reduction(MOR) can extract approximate low-order model from the original large scale system.Conventional model order reduction algorithm is based on first-order system model,however,most structure mechanical MEMS systems are naturally second-order in time.For the purpose of solving the above problem,a direct second-order system model order reduction approach based on Krylov subspace projection for the coupled dynamic study of electrostatic torsional micromirrors is presented.The block Arnoldi process is applied to create the orthonormal vectors to construct the projection matrix,which enables the extraction of the low order model from the discretized system assembled through finite element analysis.The transfer functions of the reduced order model and the original model are expanded to demonstrate the moment-matching property of the second-order model reduction algorithm.The torsion and bending effect are included in the finite element model,and the squeeze film damping effect is considered as well.An empirical method considering relative error convergence is adopted to obtain the optimal choice of the order for the reduced model.A comparison research between the full model and the reduced model is carried out.The modeling accuracy and computation efficiency of the presented second-order model reduction method are confirmed by the comparison research results.The research provides references for MOR of MEMS.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive anal...Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.展开更多
Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computatio...Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computational models such as projection-based reduced-order models. This paper presents a complete framework for projection-based model order reduction (PMOR) of nonlinear problems in the presence of AMR that builds on elements from existing methods and augments them with critical new contributions. In particular, it proposes an analytical algorithm for computing a pseudo-meshless inner product between adapted solution snapshots for the purpose of clustering and PMOR. It exploits hyperreduction—specifically, the energy-conserving sampling and weighting hyperreduction method—to deliver for nonlinear and/or parametric problems the desired computational gains. Most importantly, the proposed framework for PMOR in the presence of AMR capitalizes on the concept of state-local reduced-order bases to make the most of the notion of a supermesh, while achieving computational tractability. Its features are illustrated with CFD applications grounded in AMR and its significance is demonstrated by the reported wall-clock speedup factors.展开更多
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin...A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.展开更多
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g...This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.展开更多
Model order reduction(MOR)is considered as a good alternative to reduce the computational scale for electro-magnetic problems.The aim of this work is to introduce the use of dynamic mode decomposition(DMD)as a promisi...Model order reduction(MOR)is considered as a good alternative to reduce the computational scale for electro-magnetic problems.The aim of this work is to introduce the use of dynamic mode decomposition(DMD)as a promising tool for MOR to analyze its effectiveness in creating a fast model-based design platform for the permanent magnet motor design for ur-ban aerial vehicles(UAVs).Using a singular value decomposition(SVD)based DMD,the design process is constructed and verified against different scenarios.展开更多
An efficient numerical simulation technique is introduced to extract the propagation characteristics of a millimeter guided wave structure. The method is based on the application of the Krylov subspace model order red...An efficient numerical simulation technique is introduced to extract the propagation characteristics of a millimeter guided wave structure. The method is based on the application of the Krylov subspace model order reduction technique (Padé via Lanczos) to the compact finite difference frequency domain (FDFD) method. This new technique speeds up the solution by decreasing the originally larger system matrix into one lower order system matrix. Numerical experiments from several millimeter guided wave structures demonstrate the efficiency and accuracy of this algorithm.展开更多
Model order reduction of interconnect circuits is an important technique to reduce the circuit complexity and improve the efficiency of post-layout verification process in the nanometer VLSI design. Existing works usi...Model order reduction of interconnect circuits is an important technique to reduce the circuit complexity and improve the efficiency of post-layout verification process in the nanometer VLSI design. Existing works using the Krylov subspace method are very efficient, but the resulting models are less compact and lack global accuracy. Also, existing methods cannot handle interconnect circuits with large input and output ports. Recent advances in reduction techniques using non-Krylov subspace techniques such as truncated balanced realization (TBR) hold some promise to solve these problems. In this paper, we first review the classic TBR-based reduction methods and then present the recent developments in fast TBR-based reduction and techniques such as PMTBR, SBPOR, and ETBR methods. These newly proposed methods try to avoid the expensive computing steps in traditional TBR methods at some cost to accuracy to boost efficiency and scalability, which is critical to reduce large interconnect parasitics modeled as RLCK circuits. The ETBR method can also reduce circuits with massive ports by considering the input signals. We show the pros and cons of each method and compare them on a set of large interconnect circuits, and finally point to some new research directions for this area.展开更多
In this paper, we present an accelerated simulation approach on waveform relaxation using Krylov subspace for a large time-dependent system composed of some subsystems. This approach first allows these subsystems to b...In this paper, we present an accelerated simulation approach on waveform relaxation using Krylov subspace for a large time-dependent system composed of some subsystems. This approach first allows these subsystems to be decoupled by waveform relaxation. Then the Arnoldi procedure based on Krylov subspace is provided to accelerate the simulation of the decoupled subsystems independently. For the new approach, the convergent conditions on waveform relaxation are derived. The robust behavior is also successfully illustrated via numerical examples.展开更多
The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetal...The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetallic mineralization,NW Iran.This work proposes a backward elimination approach(BEA)that quantitatively predicts the Au concentration from main effects(X),quadratic terms(X2)and the first order interaction(Xi×Xj)of Ag,Cu,Pb,and Zn by initialization,order reduction and validation of model.BEA is done based on the quadratic model(QM),and it was eliminated to reduced quadratic model(RQM)by removing insignificant predictors.During the QM optimization process,overall convergence trend of R2,R2(adj)and R2(pred)is obvious,corresponding to increase in the R2(pred)and decrease of R2.The RQM consisted of(threshold value,Cu,Ag×Cu,Pb×Zn,and Ag2-Pb2)and(Pb,Ag×Cu,Ag×Pb,Cu×Zn,Pb×Zn,and Ag2)as main predictors of optimized model according to288and679litho-samples in trenches and boreholes,respectively.Due to the strong genetic effects with Au mineralization,Pb,Ag2,and Ag×Pb are important predictors in boreholes RQM,while the threshold value is known as an important predictor in the trenches model.The RQMs R2(pred)equal74.90%and60.62%which are verified by R2equal to73.9%and60.9%in the trenches and boreholes validation group,respectively.展开更多
This paper develops an economic production quantity(EPQ)model for a singlemanufacturer multi-retailer(SMMR)production and reworking system with green and environmental sensitive customer demand.The minimum cost of the...This paper develops an economic production quantity(EPQ)model for a singlemanufacturer multi-retailer(SMMR)production and reworking system with green and environmental sensitive customer demand.The minimum cost of the manufacturer has obtained under carbon emissions(CE)policies and discrete ordering cost reduction.The model is used to optimize the total number of shipments,greening investment level,environmental measure,and lot size for productions and rework.This research work determines that the manufacturer’s and retailer’s profits will be increased after considering the environmental and green dependent demand of customers.Further,the development of green and environmental demand is proposed to minimize the CE and maximize the demand for the customers.In the existing literature,no discrete investment is developed for reducing the cost of ordering for the retailer/buyer.However,in this paper,we have introduced it.We provide numerical examples to explain the models and determine the significance of model parameters.展开更多
At present, deep learning based methods are being employed to resolvethe computational challenges of high-dimensional partial differential equations(PDEs). But the computation of the high order derivatives of neural n...At present, deep learning based methods are being employed to resolvethe computational challenges of high-dimensional partial differential equations(PDEs). But the computation of the high order derivatives of neural networks iscostly, and high order derivatives lack robustness for training purposes. We proposea novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variablesto rewrite the PDEs into a system of low order differential equations as what is donein the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neuralnetwork. By taking the residual of the system as a loss function, we can optimizethe network parameters to approximate the solution. The whole process relies onlow order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularlywell-suited for high-dimensional PDEs with high order derivatives.展开更多
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
基金The project supported by National Natural Science Foundation of China under Grant Nos, 10372053 and 10472040, the Natural Science Foundation of Hunan Province under Grant No. 03JJY3005, the Scientific Research Foundation of Eduction Burean of Hunan Province under Grant No. 02C033 and the 0utstanding Young Talents Training Fund of Liaoning Province under Grant No. 3040005
文摘Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.
基金supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.
基金supported by the National Nature Science Foundation of China(No.51678210)National Key Research and Development Program of China(No.2016YFC0701400).
文摘Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloading/reloading stage that is dominated by a tangent stiffness,thus structural components remain residual deformations but behave in an elastic manner.It has a great potential to make model order reduction for such structural components using the tangent-stiffness-based vibration modes as a reduced order basis.In this paper,an adaptive substructure-based model order reduction method is developed to perform nonlinear seismic analysis for structures that have a priori unknown damage distribution.This method is able to generate time-varying substructures and make nonlinear model order reduction for substructures in the residual-elastic phase.The finite element program OpenSees has been extended to provide the adaptive substructure-based nonlinear seismic analysis.At the low level of OpenSees framework,a new abstract layer is created to represent the time-varying substructures and implement the modeling process of substructures.At the high level of OpenSees framework,a new transient analysis class is created to implement the solving process of substructure-based governing equations.Compared with the conventional time step integration method,the adaptive substructure-based model order reduction method can yield comparative results with a higher computational efficiency.
文摘Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Systems) etc., in order to shorten the development cost, increase the system co ntrolling accuracy and reduce the complexity of controllers, the reduced order model must be constructed. Even in Virtual Reality (VR), the simulation and d isplay must be in real-time, the model order must be reduced too. The recent advances of MOR research are overviewed in the article. The MOR theor y and methods may be classified as Singular Value decomposition (SVD) based, the Krylov subspace based and others. The merits and demerits of the different meth ods are analyzed, and the existed problems are pointed out. Moreover, the applic ation’s fields are overviewed, and the potential applications are forecaste d. After the existed problems analyzed, the future work is described. There are som e problems in the traditional methods such as SVD and Krylov subspace, they are that it’s difficult to (1)guarantee the stability of the original system, (2) b e adaptive to nonlinear system, and (3) control the modeling accuracy. The f uture works may be solving the above problems on the foundation of the tradition al methods, and applying other methods such as wavelet or signal compression.
基金supported by National Natural Science Foundation of China (Grant No. 50775201)National Science & Technology Major Project of China (Grant No. 2009ZX04014-031)PhD Programs Foundation of Ministry of Education of China (Grant No. 200803350031)
文摘Numerical solutions could not perform rapid system-level simulation of the behavior of micro-electro-mechanical systems(MEMS) and analytic solutions for the describing partial differential equations are only available for simple geometries.Model order reduction(MOR) can extract approximate low-order model from the original large scale system.Conventional model order reduction algorithm is based on first-order system model,however,most structure mechanical MEMS systems are naturally second-order in time.For the purpose of solving the above problem,a direct second-order system model order reduction approach based on Krylov subspace projection for the coupled dynamic study of electrostatic torsional micromirrors is presented.The block Arnoldi process is applied to create the orthonormal vectors to construct the projection matrix,which enables the extraction of the low order model from the discretized system assembled through finite element analysis.The transfer functions of the reduced order model and the original model are expanded to demonstrate the moment-matching property of the second-order model reduction algorithm.The torsion and bending effect are included in the finite element model,and the squeeze film damping effect is considered as well.An empirical method considering relative error convergence is adopted to obtain the optimal choice of the order for the reduced model.A comparison research between the full model and the reduced model is carried out.The modeling accuracy and computation efficiency of the presented second-order model reduction method are confirmed by the comparison research results.The research provides references for MOR of MEMS.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
文摘Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.
基金support by the Air Force Office of Scientific Research under Grant No.FA9550-20-1-0358 and Grant No.FA9550-22-1-0004.
文摘Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computational models such as projection-based reduced-order models. This paper presents a complete framework for projection-based model order reduction (PMOR) of nonlinear problems in the presence of AMR that builds on elements from existing methods and augments them with critical new contributions. In particular, it proposes an analytical algorithm for computing a pseudo-meshless inner product between adapted solution snapshots for the purpose of clustering and PMOR. It exploits hyperreduction—specifically, the energy-conserving sampling and weighting hyperreduction method—to deliver for nonlinear and/or parametric problems the desired computational gains. Most importantly, the proposed framework for PMOR in the presence of AMR capitalizes on the concept of state-local reduced-order bases to make the most of the notion of a supermesh, while achieving computational tractability. Its features are illustrated with CFD applications grounded in AMR and its significance is demonstrated by the reported wall-clock speedup factors.
基金The National Natural Science Foundation of China (No10471023)
文摘A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.
文摘This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.
基金This work was supported by Dong-A University research fund.(Corresponding author:J.Chang)
文摘Model order reduction(MOR)is considered as a good alternative to reduce the computational scale for electro-magnetic problems.The aim of this work is to introduce the use of dynamic mode decomposition(DMD)as a promising tool for MOR to analyze its effectiveness in creating a fast model-based design platform for the permanent magnet motor design for ur-ban aerial vehicles(UAVs).Using a singular value decomposition(SVD)based DMD,the design process is constructed and verified against different scenarios.
文摘An efficient numerical simulation technique is introduced to extract the propagation characteristics of a millimeter guided wave structure. The method is based on the application of the Krylov subspace model order reduction technique (Padé via Lanczos) to the compact finite difference frequency domain (FDFD) method. This new technique speeds up the solution by decreasing the originally larger system matrix into one lower order system matrix. Numerical experiments from several millimeter guided wave structures demonstrate the efficiency and accuracy of this algorithm.
基金Supported in part by National Science Foundation (NSF) (Nos.CCF-0448534 and OISE-0929699)in part by the National Natural Science Foundation of China (No. 60828008)
文摘Model order reduction of interconnect circuits is an important technique to reduce the circuit complexity and improve the efficiency of post-layout verification process in the nanometer VLSI design. Existing works using the Krylov subspace method are very efficient, but the resulting models are less compact and lack global accuracy. Also, existing methods cannot handle interconnect circuits with large input and output ports. Recent advances in reduction techniques using non-Krylov subspace techniques such as truncated balanced realization (TBR) hold some promise to solve these problems. In this paper, we first review the classic TBR-based reduction methods and then present the recent developments in fast TBR-based reduction and techniques such as PMTBR, SBPOR, and ETBR methods. These newly proposed methods try to avoid the expensive computing steps in traditional TBR methods at some cost to accuracy to boost efficiency and scalability, which is critical to reduce large interconnect parasitics modeled as RLCK circuits. The ETBR method can also reduce circuits with massive ports by considering the input signals. We show the pros and cons of each method and compare them on a set of large interconnect circuits, and finally point to some new research directions for this area.
基金This work was supported by the Natural Science Foundation of China(NSFC) under grant 11071192 and the International Science and Technology Cooperation Program of China under grant 2010DFA14700.
文摘In this paper, we present an accelerated simulation approach on waveform relaxation using Krylov subspace for a large time-dependent system composed of some subsystems. This approach first allows these subsystems to be decoupled by waveform relaxation. Then the Arnoldi procedure based on Krylov subspace is provided to accelerate the simulation of the decoupled subsystems independently. For the new approach, the convergent conditions on waveform relaxation are derived. The robust behavior is also successfully illustrated via numerical examples.
基金support of the IMIDRO(Iranian Mines and Mining Industries Development & Renovation Organization) for our research
文摘The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetallic mineralization,NW Iran.This work proposes a backward elimination approach(BEA)that quantitatively predicts the Au concentration from main effects(X),quadratic terms(X2)and the first order interaction(Xi×Xj)of Ag,Cu,Pb,and Zn by initialization,order reduction and validation of model.BEA is done based on the quadratic model(QM),and it was eliminated to reduced quadratic model(RQM)by removing insignificant predictors.During the QM optimization process,overall convergence trend of R2,R2(adj)and R2(pred)is obvious,corresponding to increase in the R2(pred)and decrease of R2.The RQM consisted of(threshold value,Cu,Ag×Cu,Pb×Zn,and Ag2-Pb2)and(Pb,Ag×Cu,Ag×Pb,Cu×Zn,Pb×Zn,and Ag2)as main predictors of optimized model according to288and679litho-samples in trenches and boreholes,respectively.Due to the strong genetic effects with Au mineralization,Pb,Ag2,and Ag×Pb are important predictors in boreholes RQM,while the threshold value is known as an important predictor in the trenches model.The RQMs R2(pred)equal74.90%and60.62%which are verified by R2equal to73.9%and60.9%in the trenches and boreholes validation group,respectively.
基金supported by University Grants Commission–Special Assistance Program(DSA I)[grant number F.510/7/DSA-I/2015(SAP-I)],Government of India,New Delhi.
文摘This paper develops an economic production quantity(EPQ)model for a singlemanufacturer multi-retailer(SMMR)production and reworking system with green and environmental sensitive customer demand.The minimum cost of the manufacturer has obtained under carbon emissions(CE)policies and discrete ordering cost reduction.The model is used to optimize the total number of shipments,greening investment level,environmental measure,and lot size for productions and rework.This research work determines that the manufacturer’s and retailer’s profits will be increased after considering the environmental and green dependent demand of customers.Further,the development of green and environmental demand is proposed to minimize the CE and maximize the demand for the customers.In the existing literature,no discrete investment is developed for reducing the cost of ordering for the retailer/buyer.However,in this paper,we have introduced it.We provide numerical examples to explain the models and determine the significance of model parameters.
基金supported by the National Natural Science Foundation of China/Hong Kong RRC Joint Research Scheme(NSFC/RGC 11961160718)the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)+1 种基金supported by the National Science Foundation of China(NSFC-11871264)the Guangdong Basic and Applied Basic Research Foundation(2018A0303130123).
文摘At present, deep learning based methods are being employed to resolvethe computational challenges of high-dimensional partial differential equations(PDEs). But the computation of the high order derivatives of neural networks iscostly, and high order derivatives lack robustness for training purposes. We proposea novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variablesto rewrite the PDEs into a system of low order differential equations as what is donein the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neuralnetwork. By taking the residual of the system as a loss function, we can optimizethe network parameters to approximate the solution. The whole process relies onlow order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularlywell-suited for high-dimensional PDEs with high order derivatives.