期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Reductive leaching of zinc and indium from industrial zinc ferrite particulates in sulphuric acid media 被引量:7
1
作者 张帆 魏昶 +3 位作者 邓志敢 李存兄 李兴彬 李旻廷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2495-2501,共7页
Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate... Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values. 展开更多
关键词 reductive leaching zinc ferrite ZINC INDIUM sphalerite concentrate
下载PDF
Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H_2SO_4 被引量:17
2
作者 粟海锋 刘怀坤 +2 位作者 王凡 吕小艳 文衍宣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第5期730-735,共6页
The kinetics of reductive leaching of manganese from low grade pyrolusite in dilute sulfuric acid in the presence of molasses alcohol wastewater was investigated. The shrinking core model was applied to quantify the e... The kinetics of reductive leaching of manganese from low grade pyrolusite in dilute sulfuric acid in the presence of molasses alcohol wastewater was investigated. The shrinking core model was applied to quantify the effects of reaction parameters on leaching rate. The leaching rate increases with reaction temperature, concentrations of H 2 SO 4 and organic matter in molasses alcohol wastewater increase and ore particle size decreases. The leaching process follows the kinetics of a shrinking core model and the apparent activation energy is 57.5 kJ·mol –1 . The experimental results indicate a reaction order of 0.52 for H2SO4 concentration and 0.90 for chemical oxygen demand (COD) of molasses alcohol wastewater. It is concluded that the reductive leaching of pyrolusite with molasses alcohol wastewater is controlled by the diffusion through the ash/inert layer composed of the associated minerals. 展开更多
关键词 PYROLUSITE molasses alcohol wastewater reductive leaching KINETICS
下载PDF
Kinetics of reductive leaching of manganese oxide ore using cellulose as reductant 被引量:6
3
作者 武芳芳 钟宏 +1 位作者 王帅 赖素凤 《Journal of Central South University》 SCIE EI CAS 2014年第5期1763-1770,共8页
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2... The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses. 展开更多
关键词 manganese oxide ore: reductive leaching CELLULOSE KINETICS
下载PDF
Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution 被引量:1
4
作者 F.Maddah M.Alitabar H.Yoozbashizadeh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期373-379,共7页
The present study evaluates the reductive leaching of indium from indium-bearing zinc ferrite using oxalic acid as a reducer in sulfuric acid solution.The effect of main factors affecting the process rate,including th... The present study evaluates the reductive leaching of indium from indium-bearing zinc ferrite using oxalic acid as a reducer in sulfuric acid solution.The effect of main factors affecting the process rate,including the oxalic-acid-to-sulfuric-acid ratio,stirring rate,grain size,temperature,and the initial concentration of synergic acid,was precisely evaluated.The results confirmed the acceptable efficiency of dissolving indium in the presence of oxalic acid.The shrinking-core model with a chemical-reaction-controlled step can correctly describe the kinetics of indium dissolution.On the basis of an apparent activation energy of 44.55 kJ/mol and a reaction order with respect to the acid concentration of 1.14,the presence of oxalic acid was found to reduce the sensitivity to temperature changes and to increase the effect of changes in acid concentration.Finally,the equation of the kinetic model based on the factors under study is presented. 展开更多
关键词 oxalic acid reductive leaching INDIUM
下载PDF
Reductive acid leaching of cadmium from zinc neutral leaching residue using hydrazine sulfate 被引量:3
5
作者 张纯 闵小波 +3 位作者 张建强 王密 周波生 沈忱 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4175-4182,共8页
Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environme... Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue. 展开更多
关键词 reductive acid leaching zinc neutral leaching residue hydrazine sulfate CADMIUM
下载PDF
Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant 被引量:17
6
作者 Jian YANG Liang-xing JIANG +2 位作者 Fang-yang LIU Ming JIA Yan-qing LAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2256-2264,共9页
Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and ... Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries. 展开更多
关键词 spent lithium-ion batteries reductive acid leaching hydrazine sulfate leaching mechanism KINETICS
下载PDF
Manganese extraction from high-iron-content manganese oxide ores by selective reduction roasting-acid leaching process using black charcoal as reductant 被引量:10
7
作者 张元波 赵熠 +3 位作者 游志雄 段道显 李光辉 姜涛 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2515-2520,共6页
Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracit... Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracite, higher manganese extraction efficiency is achieved at lower roasting temperature and shorter residence time. The effects of roasting parameters on the leaching efficiency of Mn and Fe were studied, and the optimal parameters are determined as follows: roasting temperature is 650 °C, residence time is 40 min, and black charcoal dosage is 10%(mass fraction). Under these conditions, the leaching efficiency of Mn reaches 82.37% while that of Fe is controlled below 7%. XRD results show that a majority of MnO2 and Fe2O3 in the raw ore are reduced to MnO and Fe3O4, respectively. 展开更多
关键词 manganese ore reduction roasting acid leaching black charcoal
下载PDF
A method for recovery of iron,titanium,and vanadium from vanadium-bearing titanomagnetite 被引量:12
8
作者 Yi-min Zhang Li-na Wang +4 位作者 De-sheng Chen Wei-jing Wang Ya-hui Liu Hong-xin Zhao Tao Qi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第2期131-144,共14页
An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water lea... An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70 wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively. 展开更多
关键词 recovery vanadium titanomagnetite direct reduction sodium oxidation smelting separation water leaching
下载PDF
Reduction leaching of rare earth from ion-adsorption type rare earths ore with ferrous sulfate 被引量:18
9
作者 肖燕飞 冯宗玉 +4 位作者 胡谷华 黄莉 黄小卫 陈迎迎 龙志奇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第9期917-923,共7页
The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the redu... The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the reduction leaching of rare earth from the ion-adsorption type rare earths ore with ferrous sulfate was innovatively put forward. The soak leaching process and the column leaching process were investigated in the present study. It was determined that ion-exchangeable phase could be released, and part of colloidal sediment phase rare earth could be reduction leached by the cations with reduction properties. The mechanism of reduction leaching was discussed with the Eh-pH diagram of cerium. Moreover, the stronger reduction of reductive ions, the greater acidity of leaching agent solution, and the higher reductive ion concentration, could result in the higher rare earth efficiency and the bigger ce-rium partition in the leaching liquor. In the ferrous sulfate column leaching process, the rare earth leaching rate and the rare earth effi-ciency were a little higher than with (NH4)2SO4 agent, and the rare earth efficiency and the partitioning of cerium in leaching liquor could be about 102% and 5.31%, respectively. However, the ferrous sulfate leaching process revealed some problems, so compound leaching with magnesium sulfate and a small amount of ferrous sulfate was proposed to an excellent alternative leaching agent for further studies, which may realize efficiency extraction and be environment-friendly. 展开更多
关键词 rare earth reduction leaching ferrous sulfate the ion-adsorption type rare earths ore
原文传递
Influence of phase and microstructure on the rate of hydrochloric acid leaching in pretreated Panzhihua ilmenite 被引量:11
10
作者 Qingshan Zhu Jianbo Zhang Hongzhong Li 《Particuology》 SCIE EI CAS CSCD 2014年第3期83-90,共8页
The present study investigated the influence of high temperature oxidation and reduction pretreatments on the leaching rate ofPanzhihua ilmenite. The as-pretreated ilmenite was leached with 20% HCI at 105 ℃, The leac... The present study investigated the influence of high temperature oxidation and reduction pretreatments on the leaching rate ofPanzhihua ilmenite. The as-pretreated ilmenite was leached with 20% HCI at 105 ℃, The leaching process was controlled by the phases and microstructures that evolved during the pretreatment processes. The leaching kinetics of pure hematite, ilmenite and pseudobrookite were characterized to clarify the phase effect on the iron-leaching rate; the rate of iron leaching occurs in the following order in the HCI solution: hematite (ferric iron) 〉 ilmenite (ferrous iron) 〉〉 pseudobrookite (ferric iron). Therefore, the often-cited notion that ferrous iron dissolves faster in HCl solutions than ferric iron when explaining the pretreatment effects is inaccurate. Moreover, the oxidation pretreatment (at 600-1000 ℃ for 4 h) cannot destroy the dense structure of the Panzhihua ilmenite. Therefore, the influence exerted by the oxidation on the leaching process is primarily determined by the phase change; oxidation at 600 and 700℃ slightly increased the rate of iron leaching because the ilmenite was transformed into hematite, while the oxidation at 900-1000℃ significantly reduced the rate of iron leaching because a pseudobrookite phase formed. The reduction effect was subsequently investigated; the as-oxidized ilmenite was reduced under H2 at 750 ℃ for 30 min. The reduction significantly accelerated the rate of subsequent iron leaching such that nearly all of the iron had dissolved after leaching for 2 h in 20% HCl at 105 ℃. This enhanced iron-leaching rate is mainly attributed to the cracks and holes that formed during the reduction process. 展开更多
关键词 llmenite Oxidation Reduction Hydrochloric acid leaching
原文传递
Preparation and Electrochemical Performance of Nano-Co_3O_4 Anode Materials from Spent Li-Ion Batteries for Lithium-Ion Batteries 被引量:11
11
作者 Chuanyue Hu Jun Guo +1 位作者 Jin Wen Yangxi Peng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第3期215-220,共6页
A hydrometallurgical process for the recovery of cobalt oxalate from spent lithium-ion batteries was used to recycle cobalt compound by using alkali leaching, reductive acid leaching and chemical deposition of cobalt ... A hydrometallurgical process for the recovery of cobalt oxalate from spent lithium-ion batteries was used to recycle cobalt compound by using alkali leaching, reductive acid leaching and chemical deposition of cobalt oxalate. The recycled cobalt oxalate was used to synthesize nano-Co3O4 anode material by sol-gel method. The samples were characterized by thermal gravity analysis and differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge/discharge measurements. The influence of molar ratio of Co2+ to citric acid and calcination temperature on the structure and electrochemical performance of nano-Co3O4 was evaluated. As the molar ratio of Co2+ to citric acid is 1:1, the face-centered cubic (fcc) Co3O4 powder shows the discharge capacity of 760.9 mA h g-1, the high coulombic efficiency of 99.7% in the first cycle at the current density of 125 mA g-l, and the excellent cycling performance with the reversible capacity of 442.3 mA h g-1 after 20 cycles at the current density of 250 mA g-1. 展开更多
关键词 Spent lithium-ion batteries Sol-gel method reductive acid leaching Nanostructure cobalt oxide Electrochemical behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部