The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we ...The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we propose an intelligent DHR architecture,which is more feasible by intelligently combining the random distribution based dynamic scheduling algorithm(RD-DS)and information weight and heterogeneity based arbitrament(IWHA)algorithm.In the proposed architecture,the random distribution function and information weight are employed to achieve the optimal selection of executors in the process of RD-DS,which avoids the case that some executors fail to be selected due to their stability difference in the conventional DHR architecture.Then,through introducing the heterogeneity to restrict the information weights in the procedure of the IWHA,the proposed architecture solves the common mode escape issue caused by the existence of multiple identical error output results of similar vulnerabilities.The experimental results characterize that the proposed architecture outperforms in heterogeneity,scheduling times,security,and stability over the conventional DHR architecture under the same conditions.展开更多
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi...The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.展开更多
Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constell...Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constellation performance timely,and maintain good network communication performance in case of satellite failure.From the perspective of network utility,the low Earth orbit(LEO)satellite constellation survivable graphical eva-luation and review technology(GERT)network with backup satel-lites is constructed.A network utility transfer function algorithm based on moment generating function and Mason formula is proposed,the network survivability evaluation models of on-orbit backup strategy and ground backup strategy are established.The survivable GERT model can deduce the expected mainte-nance time of LEO satellite constellation under different fault states and the network utility generated during the state mainte-nance period.The case analysis shows that the proposed surviv-able GERT model can consider the satellite failure rate,backup satellite replacement rate,maneuver control replacement ability and life requirement,and effectively determine the optimal sur-vivable backup strategy for LEO satellite constellation with limi-ted resources according to the expected network utility.展开更多
Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesio...Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.展开更多
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ...In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.展开更多
The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool...The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.展开更多
Redundancy control can effectively enhance the stability and robustness of a system.Based on the conventional redundancy control switchover and majority arbitration strategy,this paper introduces the concept of hetero...Redundancy control can effectively enhance the stability and robustness of a system.Based on the conventional redundancy control switchover and majority arbitration strategy,this paper introduces the concept of heterogeneity and dynamics,constructs a dynamic heterogeneous redundancy-based microcontroller architecture DHR-MCU,and designs a fixed-leader distributed consensus algorithm that satisfies the program running state control of this architecture.The theoretical analysis and actual measurement of the prototype system prove that this architecture has good anti-attack and self-recovery capabilities under normal functions and performances and meets the general robust features in terms of safety and security.展开更多
增强ESG(Environment,Social and Governance,环境、社会和企业治理)绩效已成为提升企业价值的新方式,而内外部良性互动是企业可持续发展的重要途径。使用2009—2022年中国上市公司数据,探究税收激励政策对企业ESG绩效的影响及其与外部...增强ESG(Environment,Social and Governance,环境、社会和企业治理)绩效已成为提升企业价值的新方式,而内外部良性互动是企业可持续发展的重要途径。使用2009—2022年中国上市公司数据,探究税收激励政策对企业ESG绩效的影响及其与外部市场监管、内部财务冗余的互动效应。实证结果表明:税收激励总体上能显著促进企业ESG绩效,经多种稳健性检验后结论仍然成立。考虑到企业内外部环境因素,资本市场监管程度较高或企业财务冗余较丰富时,税收激励对企业ESG绩效的提升作用更强,其中市场监督与税收激励的互动效应尤为显著。进一步研究表明,税收激励政策对制造业企业绿色转型的影响更明显。经济后果研究表明,税收激励能进一步促进ESG绩效对企业价值提升的作用。展开更多
基金supported by the National Key Research and Development Program of China(2020YFE0200600)the National Natural Science Foundation of China(U22B2026)。
文摘The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we propose an intelligent DHR architecture,which is more feasible by intelligently combining the random distribution based dynamic scheduling algorithm(RD-DS)and information weight and heterogeneity based arbitrament(IWHA)algorithm.In the proposed architecture,the random distribution function and information weight are employed to achieve the optimal selection of executors in the process of RD-DS,which avoids the case that some executors fail to be selected due to their stability difference in the conventional DHR architecture.Then,through introducing the heterogeneity to restrict the information weights in the procedure of the IWHA,the proposed architecture solves the common mode escape issue caused by the existence of multiple identical error output results of similar vulnerabilities.The experimental results characterize that the proposed architecture outperforms in heterogeneity,scheduling times,security,and stability over the conventional DHR architecture under the same conditions.
基金supported by National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154,62202147)the key Research and Development Program of Hubei Province,China(Grant No.2023BEB024).
文摘The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.
基金This work was supported by the National Natural Science Foundation of China(72271124,52232014,72071111,71801127,71671091).
文摘Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constellation performance timely,and maintain good network communication performance in case of satellite failure.From the perspective of network utility,the low Earth orbit(LEO)satellite constellation survivable graphical eva-luation and review technology(GERT)network with backup satel-lites is constructed.A network utility transfer function algorithm based on moment generating function and Mason formula is proposed,the network survivability evaluation models of on-orbit backup strategy and ground backup strategy are established.The survivable GERT model can deduce the expected mainte-nance time of LEO satellite constellation under different fault states and the network utility generated during the state mainte-nance period.The case analysis shows that the proposed surviv-able GERT model can consider the satellite failure rate,backup satellite replacement rate,maneuver control replacement ability and life requirement,and effectively determine the optimal sur-vivable backup strategy for LEO satellite constellation with limi-ted resources according to the expected network utility.
文摘Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
文摘In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.
文摘The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.
文摘Redundancy control can effectively enhance the stability and robustness of a system.Based on the conventional redundancy control switchover and majority arbitration strategy,this paper introduces the concept of heterogeneity and dynamics,constructs a dynamic heterogeneous redundancy-based microcontroller architecture DHR-MCU,and designs a fixed-leader distributed consensus algorithm that satisfies the program running state control of this architecture.The theoretical analysis and actual measurement of the prototype system prove that this architecture has good anti-attack and self-recovery capabilities under normal functions and performances and meets the general robust features in terms of safety and security.
文摘增强ESG(Environment,Social and Governance,环境、社会和企业治理)绩效已成为提升企业价值的新方式,而内外部良性互动是企业可持续发展的重要途径。使用2009—2022年中国上市公司数据,探究税收激励政策对企业ESG绩效的影响及其与外部市场监管、内部财务冗余的互动效应。实证结果表明:税收激励总体上能显著促进企业ESG绩效,经多种稳健性检验后结论仍然成立。考虑到企业内外部环境因素,资本市场监管程度较高或企业财务冗余较丰富时,税收激励对企业ESG绩效的提升作用更强,其中市场监督与税收激励的互动效应尤为显著。进一步研究表明,税收激励政策对制造业企业绿色转型的影响更明显。经济后果研究表明,税收激励能进一步促进ESG绩效对企业价值提升的作用。