期刊文献+
共找到720篇文章
< 1 2 36 >
每页显示 20 50 100
Evaluating Reference Crop Evapotranspiration (<i>ETo</i>) in the Centre of Guanzhong Basin—Case of Xingping &Wugong, Shaanxi, China
1
作者 Hussein I. Ahmed Junmin Liu 《Engineering(科研)》 2013年第5期459-468,共10页
In this paper, the Penman-Monteith method was applied to evaluate the reference crop evapotranspiration. A reliable estimation of the reference evapotranspiration (ETo) is of critical importance and required accurate ... In this paper, the Penman-Monteith method was applied to evaluate the reference crop evapotranspiration. A reliable estimation of the reference evapotranspiration (ETo) is of critical importance and required accurate estimates to close the water balance. The aim of this paper is estimating the reference evapotranspiration (ETo) as preliminary to use for groundwater modeling in the area. Based on FAO-Penman-Monteith method, ETo calculator software was applied. Meteorological data within this study were obtained from two gauges stations (Xing ping and Wu gong) and available literatures. The results indicated that the values of ETo for a period (1981-2009)—29 years—in two stations approximately the same. Specifically, is ranged between 0.4 - 6.9 mm /day, 0.4 - 6.7 mm/day and the average value is 2.6 mm/ day, 2.6 mm/day in Xing ping and Wu gong respectively. In addition, the maximum values were occurred in summer season (May, June and July). The result also found that the correlation coefficient ≈ 1. Moreover, “ETo” was increasing by recent years. The reference crop evapotranspiration for some crops were calculated. 展开更多
关键词 reference evapotranspiration Part of Baoyang Irrigation Area METEOROLOGICAL Data FAO
下载PDF
Analysis of Reference Evapotranspiration Change and Its Impact Factors in Australia
2
作者 谢今范 曾丽红 +1 位作者 宋开山 张柏 《Agricultural Science & Technology》 CAS 2009年第5期30-33,共4页
[ Objective] To discuss regional response of reference evapotranspiration ( ETo ) to global climate change and its influencing factors. [Method] Penman-Monteith equation was adopted to calculate ET0 in Australia fro... [ Objective] To discuss regional response of reference evapotranspiration ( ETo ) to global climate change and its influencing factors. [Method] Penman-Monteith equation was adopted to calculate ET0 in Australia from 1998 to 2007. Spatiotemporal change characteristics were analyzed by using GIS spatial analysis tools and relationships between ETo and main climate factors were also analyzed. [ Resultsl The results showed that multi-year average ET0 increased from the east and south part to the northwest part and inland, and its distribution was consistent with climate zones. Multi-year average ETo of the whole region was 1 750 mm, obtaining minimum and maximum values in 2000 and 2002 respectively. Regional ETo decreased in the order of summer, spring, autumn and winter; January and December got the highest monthly ET0, while June got the lowest value 79.55 mm. ETo positively correlated with mean temperature and solar radiation, R2 for each were 0.83 and 0.94, while the relationship between ETo and average relative humidity was negative, and precipitation had no significant relationship with ET0. [ Conclusion] This research could provide important reference for crop water requirement study and making irrigation method for Australia. 展开更多
关键词 AUSTRALIA reference evapotranspiration Penman-Monteith equation Spatiotemporal change
下载PDF
Decreasing Reference Evapotranspiration in a Warming Climate-A Case of Changjiang (Yangtze) River Catchment During 1970-2000 被引量:11
3
作者 许崇育 龚乐冰 +1 位作者 姜彤 陈德亮 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期513-520,共8页
This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during... This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during 1970-2000 in the Yangtze River catchment. Relative contributions of the four meteorological variables to changes in the reference evapotranspiration are quantified. The results show that both the reference evapotranspiration and the pan evaporation have significant decreasing trends in the upper, the middle as well as in the whole Changjiang (Yangtze) River catchment at the 5% significance level, while the air temperature shows a significant increasing trend. The decreasing trend detected in the reference evapotranspiration can be attributed to the significant decreasing trends in the net radiation and the wind speed. 展开更多
关键词 reference evapotranspiration Penman-Monteith method temporal trend Changjiang(Yangtze) River catchment China
下载PDF
Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China 被引量:6
4
作者 Jie Zhao Zong-xue Xu +1 位作者 De-peng Zuo Xu-ming Wang 《Water Science and Engineering》 EI CAS CSCD 2015年第1期1-8,共8页
On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorol... On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorological factors that affect ET0 were analyzed using the Mann- Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteo- rological factors to the temporal variation of ET0, a sensitivity coefficient method was employed in this study. The results show that: (1) mean annual air temperature significantly increased at all 15 meteorological stations, while the mean annual ET0 decreased at most of sites; (2) the evaporation paradox did exist in the HRB, while the evaporation paradox was not continuous in space and time; and (3) relative humidity was the most sensitive meteorological factor with regard to the temporal variation of ET0 in the HRB, followed by wind speed, air temperature, and solar radiation. Air temperature and solar radiation contributed most to the temporal variation of ETo in the upper reaches; solar radiation and wind speed were the determining factors for the temporal variation of ET0 in the middle-lower reaches. 展开更多
关键词 reference evapotranspiration Evaporation paradox Meteorological factor Heihe River Basin
下载PDF
Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District 被引量:5
5
作者 Xu-ming WANG Hai-jun LIU +1 位作者 Li-wei ZHANG Rui-hao ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期250-266,共17页
Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference e... Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference evapotranspiration (ET0 ) (estimated by the Penman-Monteith method) were detected using Mann-Kendall tests and Sen's slope estimator, respectively. The authors analyzed the relationship between the ET0 change and each climatic variable's change. From 1954 to 2012, the air temperature showed a significant increasing trend, whereas relative humidity and wind speed decreased dramatically. These changes resulted in a slight increase in ETo. The radiative component of total ET0 increased from 50% to 57%, indicating that this component made a greater contribution to the increase in total ETo than the aerodynamic component, especially during the crop growing season (from April to October). The sensitivity analysis showed that ETo in Hetao is most sensitive to mean daily air temperature (11.8%), followed by wind speed (-7.3%) and relative humidity (4.8%). Changes in sunshine duration had only a minor effect on ET0 over the past 59 years. 展开更多
关键词 climatic variables reference evapotranspiration change trend Mann-Kendall test sensitivity analysis
下载PDF
Sensitivity of Penman-Monteith Reference Crop Evapotranspiration in Tao'er River Basin of Northeastern China 被引量:16
6
作者 LIANG Liqiao LI Lijuan +2 位作者 ZHANG Li LI Jiuyi LI Bin 《Chinese Geographical Science》 SCIE CSCD 2008年第4期340-347,共8页
A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeaste... A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeastern China. Mean monthly ET0 and yearly ET0 from 1961 to 2005 were estimated with the FAO-56 Penman-Monteith Equation. A 45-year historical dataset of average monthly maximum/minimum air temperature, mean air temperature, wind speed, sunshine hours and relative humidity from 15 meteorological stations was used in the analysis. Results show that: 1) Sensitivity coefficients of wind speed, air temperature and sunshine hours were positive except for those of air tem- perature of Arxan Meteorological Station, while those of relative humidity were all negative. Relative humidity was the most sensitive variable in general for the Tao'er River Basin, followed by sunshine hours, wind speed and air tem- perature. 2) Similar to climate variable, monthly sensitivity coefficients exhibit large annual fluctuations. 3) Sensitivity coefficients for four climate variables all showed significant trends in seasonal/yearly series. Also, sensitivity coefficients of air temperature, sunshine hours and wind speed all showed significant trends in spring. 4) Among all sensitiv- ity coefficients, the average yearly sensitivity coefficient of relative humidity was highest throughout the basin and showed largest spatial variability. Longitudinal distribution of sensitivity coefficients for air temperature, relative hu- midity and sunshine hours was also found, which was similar to the distribution of the three climate variables. 展开更多
关键词 reference crop evapotranspiration Penman-Monteith Equation sensitivity coefficient Tao'er River Basin
下载PDF
Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China 被引量:5
7
作者 Xin-e Tao Hua Chen +2 位作者 Chong-yu Xu Yu-kun Hou Meng-xuan Jie 《Water Science and Engineering》 EI CAS CSCD 2015年第4期273-281,共9页
Reference evapotranspiration (ETo) is often used to estimate actual evapotranspiration in water balance studies. In this study, the present and future spatial distributions and temporal trends of ETo in the Xiangjia... Reference evapotranspiration (ETo) is often used to estimate actual evapotranspiration in water balance studies. In this study, the present and future spatial distributions and temporal trends of ETo in the Xiangjiang River Basin (XJRB) in China were analyzed. ETo during the period from 1961 to 2010 was calculated with historical meteorological data using the FAO Penman-Monteith (FAO P-M) method, while ETo during the period from 2011 to 2100 was downscaled from the Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under two emission scenarios, representative concentration pathway 4.5 and representative concentration pathway 8.5 (RCP45 and RCP85), using the statistical downscaling model (SDSM). The spatial distribution and temporal trend of ETo were interpreted with the inverse distance weighted (IDW) method and Mann-Kendall test method, respectively. Results show that: (1) the mean annual ETo of the XJRB is 1 006.3 mm during the period from 1961 to 2010, and the lowest and highest values are found in the northeast and northwest parts due to the high latitude and spatial distribution of climatic factors, respectively; (2) the SDSM performs well in simulating the present ETo and can be used to predict the future ETo in the XJRB; and (3) CMIP5 predicts upward trends in annual ETo under the RCP45 and RCP85 scenarios during the period from 2011 to 2100. Compared with the reference period (1961-1990), ETo increases by 9.8%, 12.6%, and 15.6% under the RCP45 scenario and 10.2%, 19.1%, and 27.3% under the RCP85 scenario during the periods from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100, respectively. The predicted increasing ETo under the RCP85 scenario is greater than that under the RCP45 scenario during the period from 2011 to 2100. 展开更多
关键词 reference evapotranspiration (ET0) Spatial-temporal variation Climate change Statistical downscaling Xiangjiang River Basin
下载PDF
Spatial variation of reference crop evapotranspiration on Tibetan Plateau 被引量:4
8
作者 Yong-hong YANG Zhan-yu ZHANG Xin-yi XIANG 《Water Science and Engineering》 EI CAS 2009年第1期112-120,共9页
This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ETo) was calculated with the FAO-56 stand... This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ETo) was calculated with the FAO-56 standard Penman-Monteith formula. A test of normality was performed with Statistica 6.0 software, isotropic and anisotropic semi-variogram analysis was conducted with the GS+ (geostatistics for the environmental sciences) system for Windows 7.0, and the characteristics of spatial variation of daily ETo were obtained. The following results can be obtained Daily ETo for different periods on the Tibetan Plateau are distributed normally; Except for daily ETo in the E-W (east-west) direction in the summer, which showed a slight negative correlation with distance change, the Moran's indexes of daily ETo for different periods in all directions on the Tibetan Plateau within a 100-km distance were positive, demonstrating a positive correlation with distance change; Variograms of daily ETo in June, the dry season, the wet season, as well as annual average daily ETo fit well with the Gaussian model; A variogram of daily ETo in December fit well with the exponential model; Variograms of daily ETo for the four seasons fit well with the linear With sill model. 展开更多
关键词 reference crop evapotranspiration Penman-Monteith formula semi-variogram spatial variation tibetan Plateau
下载PDF
Future changes in rainfall, temperature and reference evapotranspiration in the central India by least square support vector machine 被引量:5
9
作者 Sananda Kundu Deepak Khare Arun Mondal 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第3期583-596,共14页
Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a k... Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ETo is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ETo have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ETo and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ETo. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ETo in some decades. Two peaks of the increase are observed in ETo in the April-May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management. 展开更多
关键词 Rainfall Temperature reference evapotranspiration (eto Downscaling Least Square Support Vector Machine (LS-SVM)
下载PDF
Evaluation of alternative methods for estimating reference evapotranspiration 被引量:3
10
作者 Daniel K. Fisher H. C. Pringle III 《Agricultural Sciences》 2013年第8期51-60,共10页
Evapotranspiration is an important component in water-balance and irrigation scheduling models. While the FAO-56 Penman-Monteith method has become the de facto standard for estimating reference evapotranspiration (ETo... Evapotranspiration is an important component in water-balance and irrigation scheduling models. While the FAO-56 Penman-Monteith method has become the de facto standard for estimating reference evapotranspiration (ETo), it is a complex method requiring several weather parameters. Required weather data are oftentimes unavailable, and alternative methods must be used. Three alternative ETo methods, the FAO-56 Reduced Set, Hargreaves, and Turc methods, were evaluated for use in Mississippi, a humid region of the USA, using only measurements of air temperature. The Turc equation, developed for use with measured temperature and solar radiation, was tested with estimated radiation and found to provide better estimates of FAO-56 ETo than the other methods. Mean bias errors of 0.75, 0.28, and -0.19 mm, mean absolute errors of 0.92, 0.68, and 0.62 mm, and percent errors of 22.5%, 8.5%, and -5.7% were found for daily estimates for the FAO-56 Reduced Set, Hargreaves, and Turc methods, respectively. 展开更多
关键词 reference evapotranspiration FAO-56 PENMAN-MONTEITH Turc HARGREAVES Reduced Set IRRIGATION Scheduling
下载PDF
Reference evapotranspiration concentration and its relationship with precipitation concentration at southern and northern slopes of Tianshan Mountains, China 被引量:1
11
作者 HUANG Fa-rong YANG Tao +3 位作者 LI Qian LI Si-si LI Lan-hai Suwannee ADSAVAKULCHAI 《Journal of Mountain Science》 SCIE CSCD 2019年第6期1381-1395,共15页
The investigation of concentration characteristics of reference evapotranspiration(ETref) is important for water resources management. The concentration index(CI), concentration degree(CD) and concentration period(CP)... The investigation of concentration characteristics of reference evapotranspiration(ETref) is important for water resources management. The concentration index(CI), concentration degree(CD) and concentration period(CP) are used to investigate the concentration characteristics of ETref and the relationship between ETref concentration and precipitation concentration at sub-monthly timescale based on the daily climatic variables from 1966 to 2015 in 27 meteorological stations at the southern and northern slopes of Tianshan Mountains in China. It was found that the CI of ETref is about 0.40 and less concentrated than precipitation in the study area. At the southern slope, the maximum ETref appears in late June and is earlier than the maximum precipitation(early July), ETref distributes more equally than precipitation, and the CI, CD and CP of these two variables do not show significant change based on the Mann–Kendall test. At the northern slope, both the maximum ETref and precipitation appear in early July, and ETref is more dispersed than precipitation. During the study period, the maximum ETref at the northern slope tends to appear earlier due to the impacts of wind speed, relative humidity, sunshine duration, and air temperature. ETref concentration does not match the precipitation concentration in the study area, particularly at the southern slope. The mismatch between ETref and precipitation concentration within a year reveals the water resources pressure on environmental, social and economic sustainability in the study area. 展开更多
关键词 CONCENTRATION reference evapotranspiration Precipitation Trend analysis TIANSHAN Mountains
下载PDF
Comparison of Methods for Estimating Reference Crop Evapotranspiration in Beijing 被引量:1
12
作者 Cao Yajie Shi Youyu +1 位作者 Mo Nannan Li Xin 《Meteorological and Environmental Research》 CAS 2019年第6期72-74,78,共4页
Based on the meteorological data from 1951 to 2015 in Beijing,the reference crop evapotranspiration(ET_0)in Beijing was estimated using the FAO 56 Penman-Monteith method,the FAO PPP-17 Penman method,the Hargreaves met... Based on the meteorological data from 1951 to 2015 in Beijing,the reference crop evapotranspiration(ET_0)in Beijing was estimated using the FAO 56 Penman-Monteith method,the FAO PPP-17 Penman method,the Hargreaves method,and the Priestley-Taylor method.The results showed that the monthly and annual changing trends of ET0 estimated by the four methods are basically the same.In general,the ET0 values estimated by the Hargreaves method are the closest to those of the standard method FAO 56 Penman-Monteith,while the difference between the FAO PPP-17 Penman method and the standard method is the biggest.The Hargreaves method is the most suitable method for the estimation of ET0 in Beijing. 展开更多
关键词 reference CROP evapotranspiration ESTIMATION method Comparison
下载PDF
Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset 被引量:1
13
作者 Brian COLLINS Hadi RAMEZANI ETEDALI +1 位作者 Ameneh TAVAKOL Abbas KAVIANI 《Journal of Arid Land》 SCIE CSCD 2021年第8期858-878,共21页
Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water de... Agriculture needs to produce more food to feed the growing population in the 21st century.It makes the reference crop water requirement(WREQ)a major challenge especially in regions with limited water and high water demand.Iran,with large climatic variability,is experiencing a serious water crisis due to limited water resources and inefficient agriculture.In order to overcome the issue of uneven distribution of weather stations,gridded Climatic Research Unit(CRU)data was applied to analyze the changes in potential evapotranspiration(PET),effective precipitation(EFFPRE)and WREQ.Validation of data using in situ observation showed an acceptable performance of CRU in Iran.Changes in PET,EFFPRE and WREQ were analyzed in two 30-a periods 1957-1986 and 1987-2016.Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast,more significant in summer and spring.However,EFFPRE decreased in the southeast,northeast,and northwest,especially in winter and spring.Analysis of annual trends revealed an upward trend in PET(14.32 mm/decade)and WREQ(25.50 mm/decade),but a downward trend in EFFPRE(-11.8 mm/decade)over the second period.Changes in PET,EFFPRE and WREQ in winter have the impact on the annual trend.Among climate variables,WREQ showed a significant correlation(r=0.59)with minimum temperature.The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran.With all changes in PET and WREQ,immediate actions are needed to address the challenges in agriculture and adapt to the changing climate. 展开更多
关键词 evapotranspiration reference crop water requirement effective precipitation TREND Iran spatiotemporal change CRU TS data
下载PDF
Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm 被引量:1
14
作者 Xianghui Lu Junliang Fan +1 位作者 Lifeng Wu Jianhua Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期699-723,共25页
It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is import... It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is important for irrigation and reservoir management.Studies on forecasting of multiple-month ahead ET_(0) using machine learning models have not been reported yet.Besides,machine learning models such as the XGBoost model has multiple parameters that need to be tuned,and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution.This study investigated the performance of the hybrid extreme gradient boosting(XGBoost)model coupled with the Grey Wolf Optimizer(GWO)algorithm for forecasting multi-step ahead ET_(0)(1-3 months ahead),compared with three conventional machine learning models,i.e.,standalone XGBoost,multi-layer perceptron(MLP)and M5 model tree(M5)models in the subtropical zone of China.The results showed that theGWO-XGB model generally performed better than the other three machine learning models in forecasting 1-3 months ahead ET_(0),followed by the XGB,M5 and MLP models with very small differences among the three models.The GWO-XGB model performed best in autumn,while the MLP model performed slightly better than the other three models in summer.It is thus suggested to apply the MLP model for ET_(0) forecasting in summer but use the GWO-XGB model in other seasons. 展开更多
关键词 reference evapotranspiration extreme gradient boosting Grey Wolf Optimizer multi-layer perceptron M5 model tree
下载PDF
Assessing Climate Change Impact on Future Reference Evapotranspiration Pattern of West Bengal, India 被引量:1
15
作者 Saon Banerjee Benukar Biswas 《Agricultural Sciences》 2020年第9期793-802,共10页
Considering the importance of reference evapotranspiration (RET) in agriculture, hydrology and meteorology, the research problem was taken to assess the RET during winter season under projected climatic situation of W... Considering the importance of reference evapotranspiration (RET) in agriculture, hydrology and meteorology, the research problem was taken to assess the RET during winter season under projected climatic situation of West Bengal, India. The Penman-Monteith method was used in the study as it is the most accurate method of estimating RET. However, validation of the output of the equation was done with the help of observed data set. The data analysis was carried out using NCAR Command Language (NCL). The result clearly shows that the reference ET of the study area will be increased in the tune of 13% to 32% in the year 2050 compared to present RET level. Analysis of actual rainfall data shows a decreasing trend of winter rainfall in the study region. The projected rainfall data also follows the same pattern. Thus, the combination of low rainfall and higher ET value will demand more irrigation requirement for winter crops in West Bengal. The temporal changes of RET on decadal basis and spatial variation of RET for each decade have been observed and discussed in the paper. 展开更多
关键词 Climate Change reference evapotranspiration Penman-Monteith Method NCAR Command Languages West Bengal
下载PDF
Trends in major and minor meteorological variables and their influence on reference evapotranspiration for mid Himalayan region at east Sikkim, India 被引量:1
16
作者 Shweta YADAV Proloy DEB +2 位作者 Sonu KUMAR Vanita PANDEY Pankaj Kumar PANDEY 《Journal of Mountain Science》 SCIE CSCD 2016年第2期302-315,共14页
Abstract: Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performa... Abstract: Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performance of original and location specific calibrated Hargreaves equation (HARG) with the estimates of Food and Agricultural Organization (FAO) Penman Monteith (PM) method for higher altitudes in East Sikkim, India. The results show that the uncalibrated HARG model underestimates ET0 by 0.35 mm day^-1 whereas the results are significantly improved by regional calibration of the model. In addition, this paper also presents the variability in the trajectory associated with the climatic variables with the changing climate in the study site. Non- parametric Mann-Kendall (MK) test was used to investigate and understand the mean monthly trend of eight climatic parameters including reference evapotranspiration (ET0) for the period of 1985 - 2009. Trend of ET0 was estimated for the calculations done by FAO PM equation. The outcomes of the trend analysis show significant increasing (p ≤ 0.05) trend represented by higher Z-values, through MK test, for net radiation (Rn), maximum temperature (Tmax) and minimum temperature (Train), especially in the first months of the year. Whereas, significant (0.01 ≥ p ≤0.05) decreasing trend in vapor pressure deficit (VPD) and precipitation (P) is observed throughout the year. Declining trend in sunshine duration, VPD and ET0 is found in spring (March - May) and monsoon (June - November) season. The result displays significant (0.01≤ p ≤0.05) decreasing ET0 trend between (June - December) except in July, exhibiting the positive relation with VPD followed by sunshine duration at the station. Overall, the study emphasizes the importance of trend analysis of ET0 and other climatic variables for efficient planning and managing the agricultural practices, in identifying the changes in the meteorological parameters and to accurately assess the hydrologic water balance of the hilly regions. 展开更多
关键词 reference evapotranspiration (ET0) Climatic variables Trend analysis Mann-Kendall's test Monthly variation East Sikkim hilly region
下载PDF
Determination of Reference Evapotranspiration Using Penman-Monteith Method in Case of Missing Wind Speed Data under Subhumid Climatic Condition in Hungary 被引量:1
17
作者 Zoltán Varga-Haszonits Éva Szalka Tamás Szakál 《Atmospheric and Climate Sciences》 2022年第2期235-245,共11页
The reference evapotranspiration was calculated using Penman-Monteith method proposed. This method was evaluated on data measured by lysimeter in Szarvas experimental station in Hungary. The results of the two methods... The reference evapotranspiration was calculated using Penman-Monteith method proposed. This method was evaluated on data measured by lysimeter in Szarvas experimental station in Hungary. The results of the two methods were in good agreement. However, this method requires an amount of data which is not available at all sites of meteorological measurement. Therefore it was necessary to investigate which elements influencing evapotranspiration are important and which elements are less important. With the help of investigation was indicated that radiation and vapor pressure deficit play important role in determination of reference evapotranspiration. Taking into account this there was two possibilities to calculate evapotranspiration. One of these is to use Penman-Monteith formula with constant wind speed as advised by Allen. Another one is to neglect wind speed data. Both methods were investigated and the method with constant wind speed was found better in a subhumid climatic condition of Hungary. 展开更多
关键词 reference evapotranspiration Global Radiation Vapor Pressure Deficit Sub Humid Climate Irrigation Requirements of Crops
下载PDF
Evaluation of Eleven Reference Evapotranspiration Models in Semiarid Conditions
18
作者 Koffi Djaman Komlan Koudahe +1 位作者 Christopher Oluwakunmi Akinbile Suat Irmak 《Journal of Water Resource and Protection》 2017年第12期1469-1490,共22页
The objectives of this study were to evaluate the performance of the FAO Penman Monteith reference evapotranspiration model under limited data and some mine temperature methods of reference evapotranspiration (ETo) un... The objectives of this study were to evaluate the performance of the FAO Penman Monteith reference evapotranspiration model under limited data and some mine temperature methods of reference evapotranspiration (ETo) under the semiarid and arid conditions in Mali. The results showed that under limited data conditions, the FAO-PM equation achieved accurate estimation of daily ETo when solar radiation, relative humidity, and wind speed are lacking individually with root mean squared errors (RMSE) averaging 0.52, 0.56 and 0.62 mm/day, respectively. Much more accurate ETo was estimated under relative humidity and wind speed missing data conditions with RMSE varying from 0.20 to 0.58 mm/day and average RE, MBE and MAE of 6.7%, -0.25 mm/day and 0.30 mm/day. The Jensen-Haise equation systematically overestimated ETo while the Hansen, Christiansen, and Irmak, and the two Tabari’s equations underestimated ETo at all weather stations. The Abtew equation showed the best performance among the selected ETo equations. 展开更多
关键词 reference evapotranspiration SEMIARID and ARID CLIMATE MALI
下载PDF
Performance of Twelve Mass Transfer Based Reference Evapotranspiration Models under Humid Climate
19
作者 Koffi Djaman Komlan Koudahe +3 位作者 Mamadou Sall Isa Kabenge Daran Rudnick Suat Irmak 《Journal of Water Resource and Protection》 2017年第12期1347-1363,共17页
Reference evapotranspiration is very important parameter in the hydrological, agricultural and environmental studies and is accurately estimated by the FAO Penman-Monteith equation (FAO-PM) under different climatic co... Reference evapotranspiration is very important parameter in the hydrological, agricultural and environmental studies and is accurately estimated by the FAO Penman-Monteith equation (FAO-PM) under different climatic conditions. However, due to data requirement of the FAO-PM equation, there is a need to investigate the applicability of alternative ETo equations under limited data. The objectives of this study were to evaluate twelve mass transfer based reference evapotranspiration equations and determine the impact of ETo equation on long term water management sustainability in Tanzania and Kenya. The results showed that the Albrecht, Brockamp-Wenner, Dalto, Meyer, Rohwer and Oudin ETo equations systematically overestimated the daily ETo at all weather stations with relative errors that varied from 34% to 94% relative to the FAO-PM ETo estimates. The Penman, Mahringer, Trabert, and the Romanenko equations performed best across Tanzania and the South Western Kenya with root mean squared errors ranging from 0.98 to 1.48 mm/day, which are relatively high and mean bias error (MBE) varying from -0.33 to 0.02 mm/day and the absolute mean error (AME) from 0.79 to 1.16 mm/day. For sustainable water management, the Trabert equation could be adopted at Songea, the Mahringer equation at Tabora, the Dalton and/or the Rohwer equations at Eldoret, the Romanenko equation at Dodoma, Songea and Eldoret. However, regional calibration of the most performing equation could improve water management at regional level. 展开更多
关键词 reference evapotranspiration Mass Transfer EASTERN AFRICA Water
下载PDF
Calibration of Hargreaves-Samani Equation for Estimating Reference Evapotranspiration in Sub-Humid Region of Brazil
20
作者 José Romualdo de Sousa Lima Antonio Celso Dantas Antonino +3 位作者 Eduardo Soares de Souza Claude Hammecker Suzana Maria Gico Lima Montenegro Carlos Alberto Brayner de Oliveira Lira 《Journal of Water Resource and Protection》 2013年第12期1-5,共5页
Reference evapotranspiration (ETo) is an important parameter used in numerous applications, such as climatological and hydrological studies, as well as for water resources planning and management. There are several me... Reference evapotranspiration (ETo) is an important parameter used in numerous applications, such as climatological and hydrological studies, as well as for water resources planning and management. There are several methods to estimate ETo, being that the FAO Penman-Monteith (EToPM) method is considered standard. This method needs many parameters (solar radiation, air temperature, humidity and wind speed), however there are still many uncovered areas, suggesting the need for methods of calculating evapotranspiration based on few meteorological elements, such as air temperature. Therefore, this study aimed to determine the ETo by Hargreaves-Samani method in the experimental watershed of the “Riacho do Papagaio” farm, in county of Sao Joao, in north-eastern Brazil, using data of 2011 and 2012. Reference evapotranspiration estimated by non-calibrated Hargreaves-Samani method (EToHS) was overestimated in all months (RMSE = 1.43 mm·d-1), mainly in months of lower evaporative demand (from May to July). Because of these tendencies, this method cannot be used in its original form to estimate ET for this region;therefore, a calibration of radiation adjustment coefficient (kRs) was performed. The calibrated Hargreaves-Samani method (EToHSc) had better performance (RMSE = 0.52 mm·d-1), being suitable for predicting ETo in this region. 展开更多
关键词 reference evapotranspiration PENMAN-MONTEITH Hargreaves-Samani Air Temperature
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部