Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simult...Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.展开更多
The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the ...The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petallike shape, Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al- Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process.展开更多
In Mg-Ca alloys the grain refining mechanism,in particular regarding the role of nucleant substrates,remains the object of debates.Although native MgO is being recognised as a nucleating substrate accounting for grain...In Mg-Ca alloys the grain refining mechanism,in particular regarding the role of nucleant substrates,remains the object of debates.Although native MgO is being recognised as a nucleating substrate accounting for grain refinement of Mg alloys,the possible interactions of MgO with alloying elements that may alter the nucleation potency have not been elucidated yet.Herein,we design casting experiments of Mg-xCa alloys varied qualitatively in number density of native MgO,which are then comprehensively studied by advanced electron microscopy.The results show that grain refinement is enhanced as the particle number density of MgO increases.The native MgO particles are modified by interfacial layers due to the co-segregation of Ca and N solute atoms at the MgO/Mg interface.Using aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy,we reveal the nature of these Ca/N interfacial layers at the atomic scale.Irrespective of the crystallographic termination of MgO,Ca and N co-segregate at the MgO/Mg interface and occupy Mg and O sites,respectively,forming an interfacial structure of a few atomic layers.The interfacial structure is slightly expanded,less ordered and defective compared to the MgO matrix due to compositional deviations,whereby the MgO substrate is altered as a poorer template to nucleate Mg solid.Upon solidification in a TP-1 mould,the impotent MgO particles account for the grain refining mechanism,where they are suggested to participate into nucleation and grain initiation processes in an explosive manner.This work not only reveals the atomic engineering of a substrate through interfacial segregation but also demonstrates the effectiveness of a strategy whereby native MgO particles can be harnessed for grain refinement in Mg-Ca alloys.展开更多
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-...In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.展开更多
The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematica...The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematically studied by microstructure characterization,thermodynamic calculation,and analysis of solidification curves.The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810℃,exhibiting a minimum value of 136μm at 780℃.The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt.Furthermore,a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed.展开更多
Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of...Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.展开更多
The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.T...The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.The results indicate that increasing addition temperature of MgCO3 or pouring temperature is beneficial for obtaining fine grains.There is an optimal addition amount of 1.2%at the addition temperature of 790°C.Prolonging holding time at 790°C will increase grain size.The grain refining technique that 1.2%MgCO3 is added at 790°C followed by holding for 10 min and pouring can decrease the grain size from 348μm of the un-refined alloy to 69μm.The nucleation substrates are actually the Al4C3 particles formed from reactions between the MgCO3 and alloying elements in the melt.Besides the heterogeneous nucleation regime,growth restriction of the Al4C3 particles agglomerated at growing front is the other mechanism.展开更多
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a...Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.展开更多
A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed cry...A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.展开更多
Magnesium is the lightest constructional metal,which makes it an important material for different applications like automotive,transportation,aviation and aerospace.There are several studies about developing propertie...Magnesium is the lightest constructional metal,which makes it an important material for different applications like automotive,transportation,aviation and aerospace.There are several studies about developing properties of existing Mg alloys and introducing new alloy systems to industrial producers.An important way to improve properties of metallic materials is to decrease grain size that results almost in increasing all kind of properties of the material.This review paper aims to summarize the literature about grain refining of magnesium alloys.The text is consisting of three sections,which focused on the(1)grain refining methods used in the past,which are not used today,(2)grain refining methods currently being used in the industry and(3)novel and newly developed methods that may find usage in the industry in future.Before explaining grain refining methods of magnesium alloys a general summary about grain refinement of metals is also provided.展开更多
An Al 50wt%TiC composite was directly synthesized by self propagating high temperature synthesis (SHS) technology,and then was used as a grain refining master alloy for commercially pure aluminum.The microstructure...An Al 50wt%TiC composite was directly synthesized by self propagating high temperature synthesis (SHS) technology,and then was used as a grain refining master alloy for commercially pure aluminum.The microstructure and grain refining performance of the synthesized master alloy were emphatically investigated.The SHS master alloy only contained submicron TiC particles except for Al matrix.Moreover,TiC particles were relatively free of agglomeration. Grain refining tests show that adding only 0.1 wt% of the master alloys to the aluminum melt could transform the structure of the solidified samples from coarse columnar grains to fine equiaxed grains (average grain size 120μm),and that this grain refining effectiveness could be maintained for almost 1.5h at 1003K. Therefore,it is concluded that the SHS master alloy is an effective grain refiner for aluminum and its alloys, and that it is highly resistant to the grain refining fading encountered with most grain refiners.展开更多
Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The exp...Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The experimental results indicate that La can improve the wettability between liquid aluminum and graphite ; the addition of La results in dispersive distribution of TiAl3 and TiC particles in the matrix. An excellent grain refining performance of Al-Ti-C grain refiner on commercially pure Al was obtained.展开更多
The differences of grain-refining effect between Sc and Ti additions in aluminum,which cannot be substantially explained by traditional theories,were carefully studied.The empirical electron theory(EET) of solids and ...The differences of grain-refining effect between Sc and Ti additions in aluminum,which cannot be substantially explained by traditional theories,were carefully studied.The empirical electron theory(EET) of solids and molecules was employed to calculate the valence electron structures(VES) of Al3Ti and Al3Sc.The conclusions can be drawn that,in the two alloys Al-Ti and Al-Sc,the different valence electron structures of Al3Ti and Al3Sc and the consequent differences of growth habit of the two particles,and the different interfacial electron density between particles and matrix fundamentally lead to the differences of grain-refining effect between Sc and Ti additions on aluminum and make Sr the better grain-refiner of aluminum.展开更多
AM30 was inoculated by MgCO_(3) powder with different holding time.The influence of MgO decomposed by MgCO_(3)on the grain refinement effect was mainly discussed in the present study.Three sets of comparative samples ...AM30 was inoculated by MgCO_(3) powder with different holding time.The influence of MgO decomposed by MgCO_(3)on the grain refinement effect was mainly discussed in the present study.Three sets of comparative samples were prepared.They were AM30 alloy inoculated by MgO and pure Mg inoculated by MgO and MgCO_(3).The possible nucleating particles were observed and analyzed by EPMA and SEM.AM30 alloy could be effectively refined by either MgCO_(3)or MgO inoculation.Grain refining efficiency and fading effect of MgO inoculation were better than those of MgCO_(3) inoculation.However,pure Mg could not be refined by these two inoculants.Al is an indispensable element to determine the grain refinement of Mg alloys inoculated by either MgCO_(3)or MgO.MgO should not be the effective substrates forα-Mg phase.A novel grain refining mechanism of MgCO_(3) inoculation on AM30 alloy was proposed by combining experimental results with theoretical calculation,i.e.,MgAl_(2)O_(4) should be the potent nuclei ofα-Mg grain for the AM30 alloy in addition to Al_(4)C_(3).展开更多
Hot rolling of AZ31 Mg alloy was performed by using as-cast alloy ingot as the starting material.The microstructures and mechanical properties of the as-rolled alloy subjected to various rolling passes were investigat...Hot rolling of AZ31 Mg alloy was performed by using as-cast alloy ingot as the starting material.The microstructures and mechanical properties of the as-rolled alloy subjected to various rolling passes were investigated.The results show that the grain size of the alloy can be refined steadily with increasing rolling passes by dynamic recrystallization.With the steady refining of the grain size,both the mechanical strength and the plasticity of the alloy are improved correspondingly.In particular,when the grain size is reduced to about 5μm after 5 rolling passes,the yield strength,ultimate tensile strength and tensile fracture strain of the alloy are 211 MPa,280 MPa and 0.28 in the transverse direction,they are 200 MPa,268 MPa and 0.32 in the rolling direction,respectively.展开更多
The effects of grain refining parameters on grain size of AM60B magnesium alloy have been investigated using an Al-5Ti-IB master alloy as refiner; and an appropriate refining technique has been developed. The results ...The effects of grain refining parameters on grain size of AM60B magnesium alloy have been investigated using an Al-5Ti-IB master alloy as refiner; and an appropriate refining technique has been developed. The results indicate that the Al-Ti-B master alloy is an effective grain refiner for AM60B alloy and the grain size can be decreased from 348 μm to 76 μm. Raising the addition temperature or the poudng temperature is beneficial for grain refinement; while for the addition amount and holding time, there is an optimal value. The appropriate grain refining technique is that 0.3% Al-Ti-B master alloy is added at 780℃ and then the melt is held for 30 min before pouring. The above phenomena can be explained by the refining mechanisms that have been proposed from the related studies on Al and Mg alloys and theoretical analysis.展开更多
The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a...The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.展开更多
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac...Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.展开更多
High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, o...High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, orthopedic implants, etc. Controlling grain size and distribution of it is key to the promising mechanical performance of Mg-RE alloy casting components. During the casting of a real component, nearly every procedure in the fabrication process will influence the grain refinement effect. The procedure may include and may not be limited to the chemical inoculations, possibly applied physical fields, the interfere between grain refiner and purifications, and the casting techniques with different processing parameters. This paper reviews the recent advances and proposed future developments in these categories on grain refinement of cast Mg-RE alloys. The review will provide insights for the future design of grain refinement techniques,the choosing of processing parameters, and coping strategies for the failure of coarsening for cast Mg-RE components with high quality and good performance.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51871069 and 52071093)the Fundamental Research Funds for the Central Universities (No.3072020CF1009)+2 种基金the Science and Technology Innovation Major Project of Ningbo City, China (No.2019B10103)the Domain Foundation of Equipment Advance Research of 13th Five-year Plan (No.61409220118)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (No.RERU2020008)。
文摘Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.
基金Funded by the National Natural Science Foundation of China (No. 50171037) Key Project of Science and Technology Research of Ministry of Education of China (No. 01105)
文摘The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petallike shape, Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al- Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process.
基金financial support under grant number EP/N007638/1supported by EPSRC under grant number EP/W021080/1
文摘In Mg-Ca alloys the grain refining mechanism,in particular regarding the role of nucleant substrates,remains the object of debates.Although native MgO is being recognised as a nucleating substrate accounting for grain refinement of Mg alloys,the possible interactions of MgO with alloying elements that may alter the nucleation potency have not been elucidated yet.Herein,we design casting experiments of Mg-xCa alloys varied qualitatively in number density of native MgO,which are then comprehensively studied by advanced electron microscopy.The results show that grain refinement is enhanced as the particle number density of MgO increases.The native MgO particles are modified by interfacial layers due to the co-segregation of Ca and N solute atoms at the MgO/Mg interface.Using aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy,we reveal the nature of these Ca/N interfacial layers at the atomic scale.Irrespective of the crystallographic termination of MgO,Ca and N co-segregate at the MgO/Mg interface and occupy Mg and O sites,respectively,forming an interfacial structure of a few atomic layers.The interfacial structure is slightly expanded,less ordered and defective compared to the MgO matrix due to compositional deviations,whereby the MgO substrate is altered as a poorer template to nucleate Mg solid.Upon solidification in a TP-1 mould,the impotent MgO particles account for the grain refining mechanism,where they are suggested to participate into nucleation and grain initiation processes in an explosive manner.This work not only reveals the atomic engineering of a substrate through interfacial segregation but also demonstrates the effectiveness of a strategy whereby native MgO particles can be harnessed for grain refinement in Mg-Ca alloys.
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
基金the China Scholarship Council for the award of fellowship and funding(No.202006230137)。
文摘In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.
基金the National Natural Science Foundation of China(No.51871155).
文摘The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematically studied by microstructure characterization,thermodynamic calculation,and analysis of solidification curves.The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810℃,exhibiting a minimum value of 136μm at 780℃.The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt.Furthermore,a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed.
基金Project supported by Tsinghua-Wuxi Science Foundation, China
文摘Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023) supported by the Program for New Century Excellent Talents in University of China
文摘The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.The results indicate that increasing addition temperature of MgCO3 or pouring temperature is beneficial for obtaining fine grains.There is an optimal addition amount of 1.2%at the addition temperature of 790°C.Prolonging holding time at 790°C will increase grain size.The grain refining technique that 1.2%MgCO3 is added at 790°C followed by holding for 10 min and pouring can decrease the grain size from 348μm of the un-refined alloy to 69μm.The nucleation substrates are actually the Al4C3 particles formed from reactions between the MgCO3 and alloying elements in the melt.Besides the heterogeneous nucleation regime,growth restriction of the Al4C3 particles agglomerated at growing front is the other mechanism.
基金Project (09C26279200863) supported by Technology Innovation Fund Project of High-tech Small and Medium Enterprises,Ministry of Science and Technology of ChinaProject (BA2011084) supported by Special Fund Project on Science and Technology Achievement Transformation of Jiangsu Province,China
文摘Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.
基金Project(DUT15JJ(G)01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2009AA03Z525) supported by the National High-tech Research and Development Program of China
文摘A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.
文摘Magnesium is the lightest constructional metal,which makes it an important material for different applications like automotive,transportation,aviation and aerospace.There are several studies about developing properties of existing Mg alloys and introducing new alloy systems to industrial producers.An important way to improve properties of metallic materials is to decrease grain size that results almost in increasing all kind of properties of the material.This review paper aims to summarize the literature about grain refining of magnesium alloys.The text is consisting of three sections,which focused on the(1)grain refining methods used in the past,which are not used today,(2)grain refining methods currently being used in the industry and(3)novel and newly developed methods that may find usage in the industry in future.Before explaining grain refining methods of magnesium alloys a general summary about grain refinement of metals is also provided.
文摘An Al 50wt%TiC composite was directly synthesized by self propagating high temperature synthesis (SHS) technology,and then was used as a grain refining master alloy for commercially pure aluminum.The microstructure and grain refining performance of the synthesized master alloy were emphatically investigated.The SHS master alloy only contained submicron TiC particles except for Al matrix.Moreover,TiC particles were relatively free of agglomeration. Grain refining tests show that adding only 0.1 wt% of the master alloys to the aluminum melt could transform the structure of the solidified samples from coarse columnar grains to fine equiaxed grains (average grain size 120μm),and that this grain refining effectiveness could be maintained for almost 1.5h at 1003K. Therefore,it is concluded that the SHS master alloy is an effective grain refiner for aluminum and its alloys, and that it is highly resistant to the grain refining fading encountered with most grain refiners.
基金Project supported by the Natural Science Foundation of Shanxi Province (20011047)Patent Generalization Project ofShanxi Province (051025)
文摘Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The experimental results indicate that La can improve the wettability between liquid aluminum and graphite ; the addition of La results in dispersive distribution of TiAl3 and TiC particles in the matrix. An excellent grain refining performance of Al-Ti-C grain refiner on commercially pure Al was obtained.
基金Project(20050003042) supported by Research Fund for the Doctoral Program of Higher Education of China
文摘The differences of grain-refining effect between Sc and Ti additions in aluminum,which cannot be substantially explained by traditional theories,were carefully studied.The empirical electron theory(EET) of solids and molecules was employed to calculate the valence electron structures(VES) of Al3Ti and Al3Sc.The conclusions can be drawn that,in the two alloys Al-Ti and Al-Sc,the different valence electron structures of Al3Ti and Al3Sc and the consequent differences of growth habit of the two particles,and the different interfacial electron density between particles and matrix fundamentally lead to the differences of grain-refining effect between Sc and Ti additions on aluminum and make Sr the better grain-refiner of aluminum.
基金the National Natural Science Foundation of China(51574127)Natural Science Foundation of Guangdong Province(2014A030313221).
文摘AM30 was inoculated by MgCO_(3) powder with different holding time.The influence of MgO decomposed by MgCO_(3)on the grain refinement effect was mainly discussed in the present study.Three sets of comparative samples were prepared.They were AM30 alloy inoculated by MgO and pure Mg inoculated by MgO and MgCO_(3).The possible nucleating particles were observed and analyzed by EPMA and SEM.AM30 alloy could be effectively refined by either MgCO_(3)or MgO inoculation.Grain refining efficiency and fading effect of MgO inoculation were better than those of MgCO_(3) inoculation.However,pure Mg could not be refined by these two inoculants.Al is an indispensable element to determine the grain refinement of Mg alloys inoculated by either MgCO_(3)or MgO.MgO should not be the effective substrates forα-Mg phase.A novel grain refining mechanism of MgCO_(3) inoculation on AM30 alloy was proposed by combining experimental results with theoretical calculation,i.e.,MgAl_(2)O_(4) should be the potent nuclei ofα-Mg grain for the AM30 alloy in addition to Al_(4)C_(3).
文摘Hot rolling of AZ31 Mg alloy was performed by using as-cast alloy ingot as the starting material.The microstructures and mechanical properties of the as-rolled alloy subjected to various rolling passes were investigated.The results show that the grain size of the alloy can be refined steadily with increasing rolling passes by dynamic recrystallization.With the steady refining of the grain size,both the mechanical strength and the plasticity of the alloy are improved correspondingly.In particular,when the grain size is reduced to about 5μm after 5 rolling passes,the yield strength,ultimate tensile strength and tensile fracture strain of the alloy are 211 MPa,280 MPa and 0.28 in the transverse direction,they are 200 MPa,268 MPa and 0.32 in the rolling direction,respectively.
基金financially supported by the National Basic Research Program of China (grant No.G2007CB613706)the Program for New Century Excellent Talents in University of China (grant No. NCET-10-0023)
文摘The effects of grain refining parameters on grain size of AM60B magnesium alloy have been investigated using an Al-5Ti-IB master alloy as refiner; and an appropriate refining technique has been developed. The results indicate that the Al-Ti-B master alloy is an effective grain refiner for AM60B alloy and the grain size can be decreased from 348 μm to 76 μm. Raising the addition temperature or the poudng temperature is beneficial for grain refinement; while for the addition amount and holding time, there is an optimal value. The appropriate grain refining technique is that 0.3% Al-Ti-B master alloy is added at 780℃ and then the melt is held for 30 min before pouring. The above phenomena can be explained by the refining mechanisms that have been proposed from the related studies on Al and Mg alloys and theoretical analysis.
基金The authors would like to thank Mr Tetsuji Kuwabara of NAC Image Technology Inc.for support of high-speed photographingThis work was supported in part by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant No.JPMXS0118068348,JSPS KAKENHI Grant Nos.JP16H04247,JP16K14417,and 19K22061This work was funded in part by ImPACT Program of Council for Science,Technology and Innovation(Cabinet Office,Government of Japan).
文摘The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.
基金the financial support by National Key Research and Development Project(Grand No.2020YFC1107202)Guangdong Basic and Applied Basic Research Foundation(Grand No.2020A1515110754)+3 种基金MOE Key Lab of Disaster Forest and Control in Engineering,Jinan University(Grand No.20200904008)Educational Commission of Guangdong Province(Grand No.2020KTSCX012)the Fundamental Research Funds for Central Universities(Grand No.21620342)the support from National Natural Science Foundation of China,NSFC(Grand No.51775556)。
文摘Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos.U2037601,51821001,and 52105348)the Natural Science Foundation for Young of Jiangsu Province (Grant No.BK20190863)the Research Program of Joint Research Center of Advanced Spaceflight Technologies (No.USCAST2020-31)。
文摘High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, orthopedic implants, etc. Controlling grain size and distribution of it is key to the promising mechanical performance of Mg-RE alloy casting components. During the casting of a real component, nearly every procedure in the fabrication process will influence the grain refinement effect. The procedure may include and may not be limited to the chemical inoculations, possibly applied physical fields, the interfere between grain refiner and purifications, and the casting techniques with different processing parameters. This paper reviews the recent advances and proposed future developments in these categories on grain refinement of cast Mg-RE alloys. The review will provide insights for the future design of grain refinement techniques,the choosing of processing parameters, and coping strategies for the failure of coarsening for cast Mg-RE components with high quality and good performance.