期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Analysis of Directional Spectra and Reflection Coefficients in Incident and Reflected Wave Field
1
作者 柳淑学 俞聿修 《China Ocean Engineering》 SCIE EI 2001年第3期417-428,共12页
In this paper, the modified Bayesian method for the analysis of directional wave spectra and reflection coefficients is verified by numerical and physical simulation of waves. The results show that the method can basi... In this paper, the modified Bayesian method for the analysis of directional wave spectra and reflection coefficients is verified by numerical and physical simulation of waves. The results show that the method can basically separate the incident and reflected directional spectra. In addition, the effect of the type of wave gage arrays, the number of measured wave properties, and the distance between the wave gage array and the reflection line on the resolution of the method are investigated. Some suggestions are proposed for practical application. 展开更多
关键词 multidirectional waves wave gage array reflect ion coefficient incident wave wave field
下载PDF
Application of Gaussian Beam Summation Migration in Reflected In-seam Wave Imaging
2
作者 HAN Jianguang LÜQingtian +2 位作者 ZHANG Zhiheng YANG Shun WANG Shuo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期276-284,共9页
The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ... The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality. 展开更多
关键词 reflected in-seam wave Gaussian beam summation migration numerical tests fault
下载PDF
Study on Wave Field Characteristics and Imaging of Collapse Column in Three-Dimensional Detection with Love Channel Wave Reflected outside the Working Face 被引量:1
3
作者 Huachao Sun Huide Zhang +4 位作者 Jinyun Wang Xianzhuang Lv Xin Ding Shiyu Xing Heng Zhang 《Open Journal of Geology》 2020年第11期1027-1039,共13页
The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse colu... The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Reflection </span><span style="font-family:Verdana;">body </span><span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The </span><span style="font-family:Verdana;">reflected </span><span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">which</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.</span> 展开更多
关键词 reflected Love Channel wave 3D Numerical Simulation Collapse Column wave Field Characteristics Migration Imaging
下载PDF
Separation Method of Bi-directional Reflected Waves and Oblique Incident Regular Waves
4
作者 李俊 陈刚 +1 位作者 杨建民 彭涛 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第6期641-645,共5页
Wave reflection is one of the key problems afecting wave simulation quality in ocean engineering basin. The deep ocean engineering basin is equipped with two-sided segmented wavemakers and two wave absorbing beaches, ... Wave reflection is one of the key problems afecting wave simulation quality in ocean engineering basin. The deep ocean engineering basin is equipped with two-sided segmented wavemakers and two wave absorbing beaches, which are located opposite to wave generators to reduce wave reflection efects. When an oblique long- crested wave is made by two-sided segmented wavemakers in a wave basin, two bi-directional reflected waves with the same azimuth but opposite propagation directions are generated. According to this feature, based on the two-point approach developed by Goda, a method to separate an incident regular wave from two bi-directional reflected waves using three wave gauges is proposed. The validity of this method is proved by numerical composite waves. The results indicate that the method can separate incident wave from reflected waves efectively. The method can be used to determine the reflection coefcient and verify the capacity of wave absorbing beaches in deep ocean engineering basin. 展开更多
关键词 oblique regular wave separation method wave reflection reflection coefcient
原文传递
Fault detection by reflected surface waves based on ambient noise interferometry
5
作者 Ning Gu Haijiang Zhang +1 位作者 Nori Nakata Ji Gao 《Earthquake Research Advances》 CSCD 2021年第4期22-27,共6页
Detecting subsurface fault structure is important for evaluating potential earthquake risks associated with active faults.In this study,we propose a new method to detect faults using reflected surface waves observed i... Detecting subsurface fault structure is important for evaluating potential earthquake risks associated with active faults.In this study,we propose a new method to detect faults using reflected surface waves observed in ambient noise cross correlation functions.Ambient noise tomography using direct surface waves obtained from ambient noise interferometry has been widely used to characterize active fault zones.In cases where a strong velocity contrast exists across the fault interface,fault-reflected surface waves are expected.We test this idea using a linear array deployed in the Suqian segment of Tanlu fault zone in Eastern China.The fault-reflected surface waves can be clearly seen in the cross-correlation functions of the ambient noise data,and the spatial position of the fault on the surface is close to the stations where the reflected signals first appear.Potentially reflected surface waves could also be used to infer the dip angle,fault zone thickness and the degree of velocity contrast across the fault by comparing synthetic and observed waveforms. 展开更多
关键词 Fault detection Ambient noise Cross-correlation functions reflected surface wave Tanlu fault zone
下载PDF
Comparative Analysis of Application of Seismic Wave Reflection Method in Advanced Geological Prediction
6
作者 Prediction Duan Pu Dunli Chen Yinfeng Dong 《Journal of Architectural Research and Development》 2023年第2期27-39,共13页
Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In ... Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In order to verify the prediction efficacy and accuracy of the seismic wave reflection method with different instruments and equipment(tunnel geological prediction[TGP]/tunnel seismic prediction[TSP])and different vibration modes(hammering,explosives),a comparison test was carried out in Jinping Tunnel.The test results showed that the time-consumption of the hammering source was short,which can greatly reduce the impact on the construction site;different vibration sources methods of seismic wave reflection can predict the unfavorable geological sections accurately. 展开更多
关键词 Seismic wave reflection method Vibration source TSP TGP
下载PDF
Separation of diffracted waves via SVD filter 被引量:2
7
作者 Hong-Yan Shen Qin Li +2 位作者 Yue-Ying Yan Xin-Xin Li Jing Zhao 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1259-1271,共13页
Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffract... Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffracted waves is the basis for the effective utilization of diffracted waves.Based on the difference in travel times between diffracted and reflected waves,we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging.The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out(NMO) correction.Then,a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence.Following,separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO.Synthetic and field examples show that our proposed method has the advantages of fewer constraints,fast processing speed and complete extraction of diffracted waves.And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones. 展开更多
关键词 Geological heterogeneity reflected waves Diffracted waves SVD filter Seismic wave field separation Migration imaging
下载PDF
Propagation of plane P-waves at interface between elastic solid and unsaturated poroelastic medium 被引量:2
8
作者 陈炜昀 夏唐代 +1 位作者 陈伟 翟朝娇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第7期829-844,共16页
A linear viscoporoelastic model is developed to describe the problem of reflection and transmission of an obliquely incident plane P-wave at the interface between an elastic solid and an unsaturated poroelastic medium... A linear viscoporoelastic model is developed to describe the problem of reflection and transmission of an obliquely incident plane P-wave at the interface between an elastic solid and an unsaturated poroelastic medium, in which the solid matrix is filled with two weakly coupled fluids (liquid and gas). The expressions for the amplitude reflection coefficients and the amplitude transmission coefficients are derived by using the potential method. The present derivation is subsequently applied to study the energy conversions among the incident, reflected, and transmitted wave modes. It is found that the reflection and transmission coefficients in the forms of amplitude ratios and energy ratios are functions of the incident angle, the liquid saturation, the frequency of the incident wave, and the elastic constants of the upper and lower media. Numerical results are presented graphically. The effects of the incident angle, the frequency, and the liquid saturation on the amplitude and the energy reflection and transmission coefficients are discussed. It is verified that in the transmission process, there is no energy dissipation at the interface. 展开更多
关键词 wave reflection wave transmission UNSATURATION poroelasticity wave propagation porous medium
下载PDF
Shock wave mitigation using zig-zag structures and cylindrical obstructions 被引量:2
9
作者 Arun Kumar R Vaibhav Pathak 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1840-1851,共12页
The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstru... The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstruction,which in turn is expected to reduce the shock wave strength at the target location.In the present study the interaction of a plane shock front(generated from a shock tube)with various geometric designs such as,1)zig-zag geometric passage,2)staggered cylindrical obstructions and 3)zigzag passage with cylindrical obstructions have been investigated using computational technique.It is seen from the numerical simulation that,among the various designs,the maximum shock attenuation is produced by the zig-zag passage with cylindrical obstructions which is then followed by zig-zag passage and staggered cylindrical obstructions.A comprehensive investigation on the shock wave reflection and diffraction phenomena happening in the proposed complex passages have also been carried out.In the new zig-zag design,the initial shock wave undergoes shock wave reflection and diffraction process which swaps alternatively as the shock front moves from one turn to the other turn.This cyclic shock reflection and diffraction process helps in diffusing the shock wave energy with practically no obstruction to the flow field.It is found that by combining the shock attenuation ability of zig-zag passage(using shock reflection and diffraction)with the shock attenuation ability of cylindrical blocks(by flow obstruction),a drastic attenuation in shock strength can be achieved with moderate level of flow blocking. 展开更多
关键词 Blast wave mitigation Blockage ratio Geometric obstructions Shock wave reflection and diffraction Zig-zag structure
下载PDF
Active Control of A Piston-Type Absorbing Wavemaker with Fully Reflective Structure
10
作者 Saeed MAHJOURI Rasoul SHABANI +1 位作者 Ghader REZAZADEH Peyman BADIEI 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期730-737,共8页
Multiple reflections of the waves between structure and wavemaker in hydraulic flumes could change the frequency content of the desired incident wave or result in resonance. A prominent approach to avoid multiple refl... Multiple reflections of the waves between structure and wavemaker in hydraulic flumes could change the frequency content of the desired incident wave or result in resonance. A prominent approach to avoid multiple reflections is active control of the wavemaker. This paper proposes a simple and practical active control algorithm for piston-type wavemaker. The block diagram of the control system is presented in real time domain. It is shown that there is no need to use any transfer function or filter in the feedback and feed forward loops and the use of constant gains can yield acceptable results. In the operating frequency range(0.25-2 Hz), it is revealed that the proposed system is very effective at suppressing the excitation of resonant sloshing for regular wave. In the case of irregular waves, it is depicted that the experimental waves agree quite well with the desired wave elevation in frequency domain. In addition, comparison of the results obtained both with and without absorption discloses the good characteristics in time domain. 展开更多
关键词 wave flume piston-type wavemaker active absorption mathematical modeling reflective waves
下载PDF
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves
11
作者 YIN Zegao ZHENG Zihan +1 位作者 YU Ning WANG Haojian 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第6期1341-1352,共12页
Traditional breakwater takes the advantage of high protection performance and has been widely used.However,it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open ... Traditional breakwater takes the advantage of high protection performance and has been widely used.However,it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open seawater and an inside harbor.Consequently,a partially permeable stepped breakwater(PPSB)is proposed to ensure safety and good water exchange capacity for an inside harbor,and a 3-D computational fluid dynamics(CFD)mathematical model was used to investigate the hydrodynamic coefficients using Reynolds-Averaged Navier-Stokes equations,Re-Normalization Group(RNG)k-εequations,and the VOF technique.A series of experiments are conducted to measure the wave heights for validating the mathematical model,and a series of dimensionless parameters considering wave and PPSB effects were presented to assess their relationships with hydrodynamic coefficients,respectively.With the increase in the reciprocal value of PPSB slope,incident wave steepness and permeable ratio below still water level(SWL),the wave reflection coefficient decreases.The wave transmission coefficient decreases with an increase in the reciprocal value of the PPSB slope and incident wave steepness;however,it increases with the increase in the permeable ratio below SWL.With increases in the reciprocal value of the PPSB slope,permeable ratio below SWL and incident wave steepness for relatively high wave period scenarios,the wave energy dissipation coefficient increases;however,it decreases slightly with increases in the incident wave steepness for the smallest wave period scenarios.Furthermore,simple prediction formulas are conducted for predicting the hydrodynamic coefficients and they are well validated with the related data. 展开更多
关键词 regular waves partially permeable stepped breakwater wave reflection coefficient wave transmission coefficient wave energy dissipation coefficient mathematical model
下载PDF
Crack dynamic propagation properties and arrest mechanism under impact loading 被引量:3
12
作者 Yuqing Dong Zheming Zhu +3 位作者 Li Ren Lei Zhou Peng Ying Meng Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1171-1184,共14页
Crack dynamic propagation and arrest behaviors have received extensive attention over the years.However,there still remain many questions,e.g.under what conditions will a running crack come to arrest?In this paper,dro... Crack dynamic propagation and arrest behaviors have received extensive attention over the years.However,there still remain many questions,e.g.under what conditions will a running crack come to arrest?In this paper,drop weight impact(DWI)tests were conducted to investigate crack arrest mechanism using single cleavage triangle(SCT)rock specimens.Green sandstone was selected to prepare the SCT specimens.Dynamic stress intensity factors(DSIFs)were calculated by ABAQUS code,and the critical DSIFs were determined by crack propagation speeds and fracture time measured by crack propagation gauges(CPGs).The test results show that the critical DSIF at propagation decreases with crack propagation speed.Numerical simulation for SCT specimens under different loading waves was performed using AUTODYN code.The reflected compressive wave from the incident and transmitted plates can induce crack arrests during propagation,and the number of arrest times increases with the wave length.In order to eliminate the effect of the incident and transmitted plates,models consisting of only one SCT specimen without incident and transmitted plates were established,and the same trapezoid-shaped loading wave was applied to the SCT specimen.The results show that for the SCT specimen with transmitted boundary(analogous to an infinite plate),the trapezoid-shaped loading wave cannot induce crack arrest anymore.The numerical results can well describe the occurrence of crack arrest in the experiments. 展开更多
关键词 Crack arrest Stress wave Fracture toughness reflected wave Impact loading
下载PDF
The mechanism of liquid dispersing from a cylinder driven by central dynamic shock loading
13
作者 Lei Li Xiao-xia Lu +3 位作者 Xiao-bin Ren Ye-jun Ren Shou-tian Zhao Xiao-fang Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1313-1325,共13页
A systematic investigation on the mechanism of dynamic liquid dispersing process via theoretical and experimental approach is presented.The experiments include weak and strong constrained scenarios using the high-spee... A systematic investigation on the mechanism of dynamic liquid dispersing process via theoretical and experimental approach is presented.The experiments include weak and strong constrained scenarios using the high-speed camera technique and the flash X-ray radiography technique.Based on dynamic analysis,one-dimensional characteristics analysis and some numerical simulations on the propagating processes of blast waves before the container shell rupturing,further and detailed analyses of the experimental results are presented.The effects of the liquid viscosity on the dynamic dispersing flow are also analyzed,and the spall fracture mechanism is explored.Thus,the dominating forces determining the dispersing liquid flow are revealed,that is,the stretching and shearing action due to the interaction of two reflecting rarefaction waves in opposite propagating directions.The influence of container shell strength on the dispersing liquid flow is also investigated,and the characters of cavitation layered in liquid before shell rupturing are uncovered.Results revealed that different shell material results in different cavitating layers.Then the different cavitating layers drive the different dynamic liquid dispersing process coming into being.The metastable liquid states caused by pressure drop and cavitation generation are discussed. 展开更多
关键词 Shell effects reflected rarefaction waves Liquid spall fracture Liquid dispersing Shock waves Cavitation layered
下载PDF
Experimental Study of Mooring Type Effect on the Hydrodynamic Characteristics of VLFS
14
作者 FENG Ming-wei SUN Zhao-chen +4 位作者 LIANG Shu-xiu LI Zhi LV Xuan JIA Song-lin HUXin-yue 《China Ocean Engineering》 SCIE EI CSCD 2022年第1期155-166,共12页
Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to det... Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to determine the effects of mooring conditions on the hydroelastic response,mooring force,incident coefficient,reflection coefficient and energy dissipation coefficient.Eight mooring cables are symmetrically arranged on both sides of the model.The floating body model satisfies the similarity of stiffness and gravity,while the cable satisfies the similarity of elasticity and gravity.The results show that the effect of mooring type on mooring force is greater than that on hydroelastic response.Increasing the initial tension of the mooring cable will reduce the amplitude of the leeward of the VLFS model.The mooring angle of the mooring cable will affect the maximum mooring force and the initial tension of the mooring line will affect the wave period in which the maximum mooring force occurs.The transmission coefficient and wave energy dissipation coefficient will change regularly with different mooring types.These results may provide a reference to facilitate the mooring design of VLFS. 展开更多
关键词 VLFS hydroelastic response mooring system 3D experimental test mooring force wave reflection coefficient wave transmission coefficient wave dissipation coefficient
下载PDF
A damping boundary condition for atomistic-continuum coupling
15
作者 张杰 Kiet Tieu +5 位作者 Guillaume Michal 朱洪涛 张亮 苏利红 邓关宇 王辉 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期508-515,共8页
The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is present... The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is presented for eliminating spurious wave reflection at the interface between atomistic and continuum regions. This damping method starts by a coarse–fine decomposition of the atomic velocity based on the bridging scale method. The fine scale velocity of the atoms in the damping region is reduced by applying nonlinear damping coefficients. The effectiveness of this damping method is verified by one-and two-dimensional simulations. 展开更多
关键词 multiscale modeling spurious wave reflection coarse–fine decomposition nonlinear damping
下载PDF
Experimental Study on Performance of Combined Cambered-Type Wave Absorbing Beach
16
作者 李俊 杨建民 彭涛 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期651-656,共6页
Wave simulation performance and its quality are key factors to reflect the overall capacity and level of an ocean engineering basin. They include wave simulating and absorbing capacity of reflected waves. In order to ... Wave simulation performance and its quality are key factors to reflect the overall capacity and level of an ocean engineering basin. They include wave simulating and absorbing capacity of reflected waves. In order to reduce the influence of reflected waves, various wave absorbing devices are equipped in ocean engineering basins across the world. The experimental investigation into the performance of combined cambered-type wave absorbing beach(CCTWAB) with damping bars equipped in Deepwater Offshore Basin is conducted. The experiment adopts the two-point method. The reflection coefficients are calculated by the method, in which the incident and reflected waves can be separated from the physically simulated composite waves with different periods and wave heights in the time domain. The experimental results indicate that in the range of normal wave heights and periods for model tests, the CCTWAB with damping bars is excellent in eliminating the reflected waves. 展开更多
关键词 combined cambered-type wave absorbing beach(CCTWAB) reflected waves reflection coefficient
原文传递
Wave Interaction with an Emerged Porous Media
17
作者 I.Magdalena S.R.Pudjaprasetya L.H.Wiryanto 《Advances in Applied Mathematics and Mechanics》 SCIE 2014年第5期680-692,共13页
In this paper,we study wave interaction with an emerged porous media.The governing equation is shallow water equations with a friction term of the linearized Dupuit-Forcheimer’s formula.From the continuity of surface... In this paper,we study wave interaction with an emerged porous media.The governing equation is shallow water equations with a friction term of the linearized Dupuit-Forcheimer’s formula.From the continuity of surface and horizontal flux,we derived the wave reflection and transmission coefficient formulas.They are similar with the corresponding formulas of the submerged solid bar breakwater.We solve the equations numerically using finite volume method on a staggered grid.The numerical wave reduction in the porous media confirms the analytical wave transmission curve. 展开更多
关键词 Emerged porous media shallow water equation wave transmission coefficient wave reflection coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部