The aim of this paper is mainly to build a new representation-theoretic realization of finite root systems through the so-called Frobenius-type triangular matrix algebras by the method of reflection functors over any ...The aim of this paper is mainly to build a new representation-theoretic realization of finite root systems through the so-called Frobenius-type triangular matrix algebras by the method of reflection functors over any field. Finally, we give an analog of APR-tilting module for this class of algebras. The major conclusions contains the known results as special cases, e.g., that for path algebras over an algebraically closed field and for path algebras with relations from symmetrizable cartan matrices. Meanwhile, it means the corresponding results for some other important classes of algebras, that is, the path algebras of quivers over Frobenius algebras and the generalized path algebras endowed by Frobenius algebras at vertices.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11271318 and 11571173)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ13A010001)
文摘The aim of this paper is mainly to build a new representation-theoretic realization of finite root systems through the so-called Frobenius-type triangular matrix algebras by the method of reflection functors over any field. Finally, we give an analog of APR-tilting module for this class of algebras. The major conclusions contains the known results as special cases, e.g., that for path algebras over an algebraically closed field and for path algebras with relations from symmetrizable cartan matrices. Meanwhile, it means the corresponding results for some other important classes of algebras, that is, the path algebras of quivers over Frobenius algebras and the generalized path algebras endowed by Frobenius algebras at vertices.