Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED patt...Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.展开更多
A novel instrument that integrates reflection high energy electron diffraction(RHEED),electron energy loss spectroscopy(EELS),and imaging is designed and simulated.Since it can correlate the structural,elemental,and s...A novel instrument that integrates reflection high energy electron diffraction(RHEED),electron energy loss spectroscopy(EELS),and imaging is designed and simulated.Since it can correlate the structural,elemental,and spatial information of the same surface region via the simultaneously acquired patterns of RHEED,EELS,and energy-filtered electron microscopy,it is named correlative reflection electron microscopy(c-REM).Our simulation demonstrates that the spatial resolution of this c-REM is lower than 50 nm,which meets the requirements for in-situ monitoring the structural and chemical evolution of surface in advanced material.展开更多
The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the...The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60866001)the Special Assistant to High-Level Personnel Research Projects of Guizhou Provincial Party Committee Organization Department of China (Grant No. TZJF- 2008-31)+3 种基金the Support Plan of New Century Excellent Talents of Ministry of Education, China (Grant No. NCET-08-0651)the Doctorate Foundation of the State Education Ministry of China (Grant No. 20105201110003)the Special Governor Fund of Outstanding Professionals in Science and Technology and Education of Guizhou Province, China (Grant No. 2009114)the Doctoral Foundation Projects of Guizhou College of Finance and Economics in 2010
文摘Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As4 BEP for InGaAs films. When the As4 BEP is set to be zero, the RHEED pattern keeps a 4x3/(nx3) structure with increasing temperature, and surface segregation takes place until 470 ℃ The RHEED pattern develops into a metal-rich (4x2) structure as temperature increases to 495℃. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515℃, the RHEED pattern turns into a GaAs(2x4) structure due to In desorption. While the As4 BEP comes up to a specific value (1.33 x 10-4 Pa-1.33 x 10-3 Pa), the surface temperature can delay the segregation and desorption. We find that As4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption.
基金Project supported by the Shanghai Tech University and the National Natural Science Foundation of China(Grant No.11774039)。
文摘A novel instrument that integrates reflection high energy electron diffraction(RHEED),electron energy loss spectroscopy(EELS),and imaging is designed and simulated.Since it can correlate the structural,elemental,and spatial information of the same surface region via the simultaneously acquired patterns of RHEED,EELS,and energy-filtered electron microscopy,it is named correlative reflection electron microscopy(c-REM).Our simulation demonstrates that the spatial resolution of this c-REM is lower than 50 nm,which meets the requirements for in-situ monitoring the structural and chemical evolution of surface in advanced material.
文摘The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.