The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse colu...The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Reflection </span><span style="font-family:Verdana;">body </span><span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The </span><span style="font-family:Verdana;">reflected </span><span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">which</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.</span>展开更多
One of the problems experienced in marine geophysical exploration is that the layered features in the migration imaging profile are blurred and the seismic energy reflected is weaker in the middle or lower parts. In t...One of the problems experienced in marine geophysical exploration is that the layered features in the migration imaging profile are blurred and the seismic energy reflected is weaker in the middle or lower parts. In this study we model the seismic wavefield records in the undulating seafloor when there is both a slight change and significant change in seafloor topography to analyze its influence on the seismic reflection data and migration imaging profiles. We compare and analyze the wave field records collected at the same point on the original and modified velocity models, and the cross-bonding resulting migration imaging profiles. The results show that whether the seismic reflection data collection is performed along the direction of the survey line or against the direction of the survey line, slight changes in the seafloor topography have little effect on the wave field records and the migration profile, while significant changes in the seafloor topography have great effect on both the wave field records and migration profile.展开更多
Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away fr...Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.展开更多
The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guide...The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.展开更多
Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffract...Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffracted waves is the basis for the effective utilization of diffracted waves.Based on the difference in travel times between diffracted and reflected waves,we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging.The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out(NMO) correction.Then,a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence.Following,separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO.Synthetic and field examples show that our proposed method has the advantages of fewer constraints,fast processing speed and complete extraction of diffracted waves.And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones.展开更多
为提高偶极子横波远探测反射波的信噪比和增加其探测距离,根据偶极子井孔模式波的激发特性及反射波传播特征分析,研制了基于三叠片的低频大功率偶极子的横波远探测换能器,以降低模式波的相对能量和增加反射波的相对能量。为了得到满足...为提高偶极子横波远探测反射波的信噪比和增加其探测距离,根据偶极子井孔模式波的激发特性及反射波传播特征分析,研制了基于三叠片的低频大功率偶极子的横波远探测换能器,以降低模式波的相对能量和增加反射波的相对能量。为了得到满足要求的低频大功率偶极换能器,采用有限元方法对现有三叠片进行了优化改进,得到一种符合设计要求的换能器结构,最后制作了样机并对其进行了测试。样机测试结果跟仿真吻合得很好,低频性能得到了极大改善:换能器在谐振频率1.2 k Hz附近具有极好的偶极子指向性,谐振频率处的响应比X-MAC同频率段大19 d B。该换能器的研发成功将为偶极子远探测测井仪器性能及成像质量的提高奠定了坚实的基础。展开更多
文摘The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Reflection </span><span style="font-family:Verdana;">body </span><span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The </span><span style="font-family:Verdana;">reflected </span><span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">which</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.</span>
基金The National Natural Science Foundation of China under contract Nos 41504084 and 41274120
文摘One of the problems experienced in marine geophysical exploration is that the layered features in the migration imaging profile are blurred and the seismic energy reflected is weaker in the middle or lower parts. In this study we model the seismic wavefield records in the undulating seafloor when there is both a slight change and significant change in seafloor topography to analyze its influence on the seismic reflection data and migration imaging profiles. We compare and analyze the wave field records collected at the same point on the original and modified velocity models, and the cross-bonding resulting migration imaging profiles. The results show that whether the seismic reflection data collection is performed along the direction of the survey line or against the direction of the survey line, slight changes in the seafloor topography have little effect on the wave field records and the migration profile, while significant changes in the seafloor topography have great effect on both the wave field records and migration profile.
基金supported by National Petroleum Major Project(Grant No.2011ZX05020-008)
文摘Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.
基金Supported by the National Natural Science Foundation of China (Grant No.50674098)the National Basic Research Program of China (973 Program) (Grant No.2007CB209601)
文摘The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.
基金supported by the National Natural Science Foundation of China(41874123)Shaanxi Province Natural Science Basic Research Project(2017JZ007)PetroChina Innovation Foundation(2014D-5006-0303)。
文摘Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffracted waves is the basis for the effective utilization of diffracted waves.Based on the difference in travel times between diffracted and reflected waves,we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging.The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out(NMO) correction.Then,a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence.Following,separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO.Synthetic and field examples show that our proposed method has the advantages of fewer constraints,fast processing speed and complete extraction of diffracted waves.And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones.
文摘为提高偶极子横波远探测反射波的信噪比和增加其探测距离,根据偶极子井孔模式波的激发特性及反射波传播特征分析,研制了基于三叠片的低频大功率偶极子的横波远探测换能器,以降低模式波的相对能量和增加反射波的相对能量。为了得到满足要求的低频大功率偶极换能器,采用有限元方法对现有三叠片进行了优化改进,得到一种符合设计要求的换能器结构,最后制作了样机并对其进行了测试。样机测试结果跟仿真吻合得很好,低频性能得到了极大改善:换能器在谐振频率1.2 k Hz附近具有极好的偶极子指向性,谐振频率处的响应比X-MAC同频率段大19 d B。该换能器的研发成功将为偶极子远探测测井仪器性能及成像质量的提高奠定了坚实的基础。