We reported here the fabrication of the elec- trically tunable infrared (IR) reflectors based on the polymer stabilized cholesteric liquid crystal (PSCLC) with negative dielectric anisotropy. A systematic study of...We reported here the fabrication of the elec- trically tunable infrared (IR) reflectors based on the polymer stabilized cholesteric liquid crystal (PSCLC) with negative dielectric anisotropy. A systematic study of the influence of cell gap on the electrically tunable reflection bandwidth was performed. When a direct current (DC) electric field was ap- plied, the reflection bandwidth red shifted in the cells with small cell gap, whereas the bandwidth broadening was ob- served in the cells with large cell gap. It is therefore reasonable to deduct that the reflection is dictated by the pitch gradient steepness which strongly relies on the cell thickness. The re- sults reveal that for making PSCLC based IR reflector windows with electrically induced bandwidth broadening, a minimal cell gap thickness is required. The resulted IR reflectors pos- sess a short native switching time and long-term operation stability, and are potentially applicable as smart energy saving windows in buildings and automobiles.展开更多
基金supported by the National Natural Science Foundation of China (51503070, 51561135014, U1501244)Guangdong Innovative Research Team Program (2013C102)+3 种基金Science and technology project of Guangdong Province (2015B090913004, 2016B090909001)Science and technology Project of Shenzhen (JSGG201704143009027)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (2017B030301007)the 111 Project
文摘We reported here the fabrication of the elec- trically tunable infrared (IR) reflectors based on the polymer stabilized cholesteric liquid crystal (PSCLC) with negative dielectric anisotropy. A systematic study of the influence of cell gap on the electrically tunable reflection bandwidth was performed. When a direct current (DC) electric field was ap- plied, the reflection bandwidth red shifted in the cells with small cell gap, whereas the bandwidth broadening was ob- served in the cells with large cell gap. It is therefore reasonable to deduct that the reflection is dictated by the pitch gradient steepness which strongly relies on the cell thickness. The re- sults reveal that for making PSCLC based IR reflector windows with electrically induced bandwidth broadening, a minimal cell gap thickness is required. The resulted IR reflectors pos- sess a short native switching time and long-term operation stability, and are potentially applicable as smart energy saving windows in buildings and automobiles.