We propose a novel optical signal regeneration system based on wavelength converters by use of cross gain modulation in cascaded semiconductor optical amplifiers. The nonlinearity in optical input/output characteristi...We propose a novel optical signal regeneration system based on wavelength converters by use of cross gain modulation in cascaded semiconductor optical amplifiers. The nonlinearity in optical input/output characteristics and eye opening using NRZ signal were archived.展开更多
The Letter reports the thermal stability and strain response of Fabry–Perot(FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings(...The Letter reports the thermal stability and strain response of Fabry–Perot(FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings(FBGs). It is demonstrated that the FP cavity is capable of measuring temperatures from 300℃ to 900℃ with a temperature sensitivity of 15.97 pm/℃. The elongation of the fiber was observed through the drifted Bragg wavelength at 700℃ or above when weight was loaded. The elongation was further inferred by the slight change in the interference spectra of the FP cavity at 900℃.展开更多
文摘We propose a novel optical signal regeneration system based on wavelength converters by use of cross gain modulation in cascaded semiconductor optical amplifiers. The nonlinearity in optical input/output characteristics and eye opening using NRZ signal were archived.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in the University of Ministry of Education of China(No.IRT_16R07)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.IDHT20170510)
文摘The Letter reports the thermal stability and strain response of Fabry–Perot(FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings(FBGs). It is demonstrated that the FP cavity is capable of measuring temperatures from 300℃ to 900℃ with a temperature sensitivity of 15.97 pm/℃. The elongation of the fiber was observed through the drifted Bragg wavelength at 700℃ or above when weight was loaded. The elongation was further inferred by the slight change in the interference spectra of the FP cavity at 900℃.