Highlight Semaphorin 3A is a classically known axonal guidance cue that mediates axonal growth cone repulsion and collapse.Recent works,however,suggest that it may have the apparently diametrically opposite activity o...Highlight Semaphorin 3A is a classically known axonal guidance cue that mediates axonal growth cone repulsion and collapse.Recent works,however,suggest that it may have the apparently diametrically opposite activity of promoting neuronal regeneration.展开更多
Damage to the adult mammalian central nervous system (CNS) often results in persistent neurological deficits with limited recovery of functions. The past decade has seen in- creasing research efforts in neural regen...Damage to the adult mammalian central nervous system (CNS) often results in persistent neurological deficits with limited recovery of functions. The past decade has seen in- creasing research efforts in neural regeneration research with the ultimate goal of achieving functional recovery. Many studies have focused on prevention of further neural damage and restoration of functional connections that are com- promised after iniurY or pathological damage.展开更多
We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor(β-NGF) on neurogenesis and ...We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor(β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects filled with collagen bone substitute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μgβ-NGF in PBS(β-NGF + PBS) into the right-hand side defect, and PBS into the left(control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on the β-NGF + PBS side than on the control side, and that of neurofilament 160 was greater. On day 14, β III-tubulin and protein gene product 9.5 were greater on the β-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application of β-NGF promoted neurogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-filled defects.展开更多
Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervo...Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire(3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A m RNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.展开更多
Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro prol...Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.展开更多
Glioblastoma cyst fluid contains growth factors and extracellular matrix proteins which are known as neurotrophic and neurite-promoting agents. Therefore, we hypothesized that glioblastoma cyst fluid can promote the r...Glioblastoma cyst fluid contains growth factors and extracellular matrix proteins which are known as neurotrophic and neurite-promoting agents. Therefore, we hypothesized that glioblastoma cyst fluid can promote the regeneration of injured peripheral nerves. To validate this hypothesis, we transected rat sciatic nerve, performed epineural anastomosis, and wrapped the injured sciatic nerve with glioblastoma cyst fluid- or saline-soaked gelatin sponges. Neurological function and histomorphological examinations showed that compared with the rats receiving local saline treatment, those receiving local glioblastoma cyst fluid treatment had better sciatic nerve function, fewer scars, greater axon area, counts and diameter as well as fiber diameter. These findings suggest that glioblastoma cyst fluid can promote the regeneration of injured sciatic nerve and has the potential for future clinical application in patients with peripheral nerve injury.展开更多
The aim of this study was to obtain the fillers in the lumen of hollow nerve conduits(NCs) to improve the microenvironment of nerve regeneration. A p H-induced injectable chitosan(CS)-hyaluronic acid(HA) hydroge...The aim of this study was to obtain the fillers in the lumen of hollow nerve conduits(NCs) to improve the microenvironment of nerve regeneration. A p H-induced injectable chitosan(CS)-hyaluronic acid(HA) hydrogel for nerve growth factor(NGF) sustained release was developed. Its properties were characterized by gelation time, FT-IR, SEM, in vitro swelling and degradation. Furthermore, the in vitro NGF release profiles and cell biocompatibility were also investigated. The experimental results show that the CS-HA aqueous solution can undergo a rapid gelation 3 minutes after its environmental p H is changed to 7.4. The CSHA hydrogel has interconnected channels with a controllable pore diameter and with a porosity of about 80%. It has a favorable swelling behavior and can be degraded by about 70% within 8 weeks in vitro and is suitable for NGF release. The CS-HA/NGF hydrogel exhibits a lower cytotoxicity and is in favor of the adhesion and proliferation of the BMMSCs cells. It is indicated that the CS-HA/NGF will be a promising candidate for neural tissue engineering.展开更多
Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite c...Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite cells from adult mongrel canine were implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) artery. Specimens were harvested at 2, 4 , 8 weeks after implantation for the expression of insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor ( bFGF) and the vascular density. Results The expression of IGF-1, bFGF and the vascular density in skeletal muscle satellite cell implant group were higher than that in the control group. Conclusion The skeletal muscle satellite cells, after being implanted into the acute myocardial infarction, not only showed myocardial regeneration, but also showed the ability to secrete the cell factors, hence representing a positive effect on the regeneration of the infarcted myocardium.展开更多
Neural stem cells have great potential for the development of novel therapies for nervous system diseases.However,the proliferation of endogenous neural stem cells following brain ischemia is insufficient for central ...Neural stem cells have great potential for the development of novel therapies for nervous system diseases.However,the proliferation of endogenous neural stem cells following brain ischemia is insufficient for central nervous system self-repair.Ginkgolide B has a robust neuroprotective effect.In this study,we investigated the cell and molecular mechanisms underlying the neuroprotective effect of ginkgolide B on focal cerebral ischemia/reperfusion injury in vitro and in vivo.Neural stem cells were treated with 20,40 and 60 mg/L ginkgolide B in vitro.Immunofluorescence staining was used to assess cellular expression of neuron-specific enolase,glial fibrillary acid protein and suppressor of cytokine signaling 2.After treatment with 40 and 60 mg/L ginkgolide B,cells were large,with long processes.Moreover,the proportions of neuron-specific enolase-,glial fibrillary acid protein-and suppressor of cytokine signaling 2-positive cells increased.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.Six hours after ischemia,ginkgolide B(20 mg/kg) was intraperitoneally injected,once a day.Zea Longa's method was used to assess neurological function.Immunohistochemistry was performed to evaluate the proportion of nestin-,neuron-specific enolase-and glial fibrillary acid protein-positive cells.Real-time quantitative polymerase chain reaction was used to measure m RNA expression of brain-derived neurotrophic factor and epidermal growth factor.Western blot assay was used to analyze the expression levels of brain-derived neurotrophic factor and suppressor of cytokine signaling 2.Ginkgolide B decreased the neurological deficit score,increased the proportion of nestin-,neuron-specific enolase-and glial fibrillary acid protein-positive cells,increased the m RNA expression of brain-derived neurotrophic factor and epidermal growth factor,and increased the expression levels of brain-derived neurotrophic factor and suppressor of cytokine signaling 2 in the ischemic penumbra.Together,the in vivo and in vitro findings suggest that ginkgolide B improves neurological function by promoting the proliferation and differentiation of neural stem cells in rats with cerebral ischemia/reperfusion injury.展开更多
Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and...Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and injected Panax notoginseng saponins(100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan(BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor(NGF) and brain-derived neurotrophic factor(BDNF). Our results show that at 7–30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function.展开更多
This study aimed to use a mouse model of hypertrophic scarring by mechanical loading on the dorsum of mice to determine whether the nervous system of the skin and inflammation participates in hypertrophic scarring. Re...This study aimed to use a mouse model of hypertrophic scarring by mechanical loading on the dorsum of mice to determine whether the nervous system of the skin and inflammation participates in hypertrophic scarring. Results of hematoxylin-eosin and immunohistochemical staining demonstrated that inflammation contributed to the formation of a hypertrophic scar and increased the nerve density in scar tissue.Western blot assay verified that interleukin-13 expression was increased in scar tissue. These findings suggest that inflammation and the cutaneous nervous system play a role in hypertrophic scar formation.展开更多
Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity h...Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity has become the key to the success of central nervous system repair. It remains controversial whether fine motor skill training contributes to the recovery of neurological function after spinal cord injury. Therefore, we established a rat model of unilateral corticospinal tract injury using a pyramidal tract cutting method. Horizontal ladder crawling and food ball grasping training procedures were conducted 2 weeks before injury and 3 days after injury. The neurological function of rat forelimbs was assessed at 1, 2, 3, 4, and 6 weeks after injury. Axon growth was observed with biotinylated dextran amine anterograde tracing in the healthy corticospinal tract of the denervated area at different time periods. Our results demonstrate that compared with untrained rats, functional recovery was better in the forelimbs and forepaws of trained rats. The number of axons and the expression of growth associated protein 43 were increased at the injury site 3 weeks after corticospinal tract injury. These findings confirm that fine motor skill training promotes central nervous system plasticity in spinal cord injury rats.展开更多
Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity o...Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy.Sprague-Dawley rats were mated with male rats at a 1:1 ratio.Rats were administered 0,5,10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21.The gait scores were examined in pregnant rats in each group to analyze maternal toxicity.Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies.Nissl staining was used to observe histological change in the hippocampus.Immunohistochemistry was conducted to observe the condition of neurites,including dendrites and axons.Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein,growth associated protein 43,and the presynaptic vesicle membrane specific protein,synaptophysin.The gait scores of gravid rats significantly increased,suggesting that acrylamide induced maternal motor dysfunction.The number of neurons,as well as expression of growth associated protein 43 and synaptophysin,was reduced with increasing acrylamide dose in postnatal day 21 weaning rats.These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats.展开更多
Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/k...Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/kg,for 3 days.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.In rats administered Buyanghuanwu decoction,infarct volume was reduced,serum vascular endothelial growth factor and integrin αvβ3 levels were increased,and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals.These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor(administered through the lateral ventricle for 7 consecutive days).These data suggest that Buyanghuanwu decoction promotes angiogenesis,improves cerebral circulation,and enhances brain tissue repair after cerebral ischemia/reperfusion injury.展开更多
文摘Highlight Semaphorin 3A is a classically known axonal guidance cue that mediates axonal growth cone repulsion and collapse.Recent works,however,suggest that it may have the apparently diametrically opposite activity of promoting neuronal regeneration.
基金supported by grants from NIH National Institute of Mental Health MH085267National Institute of Neurological Disorders and Stroke NS060017
文摘Damage to the adult mammalian central nervous system (CNS) often results in persistent neurological deficits with limited recovery of functions. The past decade has seen in- creasing research efforts in neural regeneration research with the ultimate goal of achieving functional recovery. Many studies have focused on prevention of further neural damage and restoration of functional connections that are com- promised after iniurY or pathological damage.
基金supported by the Fujian Foundation for Distinguished Young Scientists in China,No.Grant#2060203the National Natural Science Foundation of China,No.31070838
文摘We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor(β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects filled with collagen bone substitute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μgβ-NGF in PBS(β-NGF + PBS) into the right-hand side defect, and PBS into the left(control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on the β-NGF + PBS side than on the control side, and that of neurofilament 160 was greater. On day 14, β III-tubulin and protein gene product 9.5 were greater on the β-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application of β-NGF promoted neurogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-filled defects.
基金supported by the National Natural Science Foundation of China,No.81400528the China Postdoctoral Science Foundation,No.20130390827
文摘Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire(3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A m RNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.
基金supported by a grant from the National Key Technology Research and Development Program of the Ministry of Science and Technology of China,No.2014BAI01B00
文摘Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.
文摘Glioblastoma cyst fluid contains growth factors and extracellular matrix proteins which are known as neurotrophic and neurite-promoting agents. Therefore, we hypothesized that glioblastoma cyst fluid can promote the regeneration of injured peripheral nerves. To validate this hypothesis, we transected rat sciatic nerve, performed epineural anastomosis, and wrapped the injured sciatic nerve with glioblastoma cyst fluid- or saline-soaked gelatin sponges. Neurological function and histomorphological examinations showed that compared with the rats receiving local saline treatment, those receiving local glioblastoma cyst fluid treatment had better sciatic nerve function, fewer scars, greater axon area, counts and diameter as well as fiber diameter. These findings suggest that glioblastoma cyst fluid can promote the regeneration of injured sciatic nerve and has the potential for future clinical application in patients with peripheral nerve injury.
基金Funded by the National Natural Science Foundation of China(Nos.51473130,51403168 and 51572206)the National CollegeStudents'Innovation and Entrepreneurship Training Programof Wuhan University of Technology(Nos.20161049720008,20161049720009,and 20161049720012)
文摘The aim of this study was to obtain the fillers in the lumen of hollow nerve conduits(NCs) to improve the microenvironment of nerve regeneration. A p H-induced injectable chitosan(CS)-hyaluronic acid(HA) hydrogel for nerve growth factor(NGF) sustained release was developed. Its properties were characterized by gelation time, FT-IR, SEM, in vitro swelling and degradation. Furthermore, the in vitro NGF release profiles and cell biocompatibility were also investigated. The experimental results show that the CS-HA aqueous solution can undergo a rapid gelation 3 minutes after its environmental p H is changed to 7.4. The CSHA hydrogel has interconnected channels with a controllable pore diameter and with a porosity of about 80%. It has a favorable swelling behavior and can be degraded by about 70% within 8 weeks in vitro and is suitable for NGF release. The CS-HA/NGF hydrogel exhibits a lower cytotoxicity and is in favor of the adhesion and proliferation of the BMMSCs cells. It is indicated that the CS-HA/NGF will be a promising candidate for neural tissue engineering.
基金Supported by grants from the Nature Science Foundation of China(39770735)
文摘Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite cells from adult mongrel canine were implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) artery. Specimens were harvested at 2, 4 , 8 weeks after implantation for the expression of insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor ( bFGF) and the vascular density. Results The expression of IGF-1, bFGF and the vascular density in skeletal muscle satellite cell implant group were higher than that in the control group. Conclusion The skeletal muscle satellite cells, after being implanted into the acute myocardial infarction, not only showed myocardial regeneration, but also showed the ability to secrete the cell factors, hence representing a positive effect on the regeneration of the infarcted myocardium.
基金supported by the National Natural Science Foundation of China,No.81073082 to JSZ
文摘Neural stem cells have great potential for the development of novel therapies for nervous system diseases.However,the proliferation of endogenous neural stem cells following brain ischemia is insufficient for central nervous system self-repair.Ginkgolide B has a robust neuroprotective effect.In this study,we investigated the cell and molecular mechanisms underlying the neuroprotective effect of ginkgolide B on focal cerebral ischemia/reperfusion injury in vitro and in vivo.Neural stem cells were treated with 20,40 and 60 mg/L ginkgolide B in vitro.Immunofluorescence staining was used to assess cellular expression of neuron-specific enolase,glial fibrillary acid protein and suppressor of cytokine signaling 2.After treatment with 40 and 60 mg/L ginkgolide B,cells were large,with long processes.Moreover,the proportions of neuron-specific enolase-,glial fibrillary acid protein-and suppressor of cytokine signaling 2-positive cells increased.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.Six hours after ischemia,ginkgolide B(20 mg/kg) was intraperitoneally injected,once a day.Zea Longa's method was used to assess neurological function.Immunohistochemistry was performed to evaluate the proportion of nestin-,neuron-specific enolase-and glial fibrillary acid protein-positive cells.Real-time quantitative polymerase chain reaction was used to measure m RNA expression of brain-derived neurotrophic factor and epidermal growth factor.Western blot assay was used to analyze the expression levels of brain-derived neurotrophic factor and suppressor of cytokine signaling 2.Ginkgolide B decreased the neurological deficit score,increased the proportion of nestin-,neuron-specific enolase-and glial fibrillary acid protein-positive cells,increased the m RNA expression of brain-derived neurotrophic factor and epidermal growth factor,and increased the expression levels of brain-derived neurotrophic factor and suppressor of cytokine signaling 2 in the ischemic penumbra.Together,the in vivo and in vitro findings suggest that ginkgolide B improves neurological function by promoting the proliferation and differentiation of neural stem cells in rats with cerebral ischemia/reperfusion injury.
文摘Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and injected Panax notoginseng saponins(100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan(BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor(NGF) and brain-derived neurotrophic factor(BDNF). Our results show that at 7–30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function.
基金supported by a grant from the Development of Medical Science and Technology Project of Shandong Province in China,No.2014WS0354the National Natural Science Foundation of China,No.81272099+1 种基金the Shandong Medical and Health Science and Technology Development Program Fund for Youth in China,No.2009QZ023the Natural Science Foundation of Shandong Province in China,No.BS2009YY043
文摘This study aimed to use a mouse model of hypertrophic scarring by mechanical loading on the dorsum of mice to determine whether the nervous system of the skin and inflammation participates in hypertrophic scarring. Results of hematoxylin-eosin and immunohistochemical staining demonstrated that inflammation contributed to the formation of a hypertrophic scar and increased the nerve density in scar tissue.Western blot assay verified that interleukin-13 expression was increased in scar tissue. These findings suggest that inflammation and the cutaneous nervous system play a role in hypertrophic scar formation.
基金supported by the National Natural Science Foundation of China,No.30972153
文摘Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity has become the key to the success of central nervous system repair. It remains controversial whether fine motor skill training contributes to the recovery of neurological function after spinal cord injury. Therefore, we established a rat model of unilateral corticospinal tract injury using a pyramidal tract cutting method. Horizontal ladder crawling and food ball grasping training procedures were conducted 2 weeks before injury and 3 days after injury. The neurological function of rat forelimbs was assessed at 1, 2, 3, 4, and 6 weeks after injury. Axon growth was observed with biotinylated dextran amine anterograde tracing in the healthy corticospinal tract of the denervated area at different time periods. Our results demonstrate that compared with untrained rats, functional recovery was better in the forelimbs and forepaws of trained rats. The number of axons and the expression of growth associated protein 43 were increased at the injury site 3 weeks after corticospinal tract injury. These findings confirm that fine motor skill training promotes central nervous system plasticity in spinal cord injury rats.
基金supported by the Guangdong Provincial Department of Science and Technology in China,No.2016A020225007
文摘Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy.Sprague-Dawley rats were mated with male rats at a 1:1 ratio.Rats were administered 0,5,10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21.The gait scores were examined in pregnant rats in each group to analyze maternal toxicity.Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies.Nissl staining was used to observe histological change in the hippocampus.Immunohistochemistry was conducted to observe the condition of neurites,including dendrites and axons.Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein,growth associated protein 43,and the presynaptic vesicle membrane specific protein,synaptophysin.The gait scores of gravid rats significantly increased,suggesting that acrylamide induced maternal motor dysfunction.The number of neurons,as well as expression of growth associated protein 43 and synaptophysin,was reduced with increasing acrylamide dose in postnatal day 21 weaning rats.These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats.
基金financially supported by the National Natural Science Foundation of China,No.81072799
文摘Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/kg,for 3 days.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.In rats administered Buyanghuanwu decoction,infarct volume was reduced,serum vascular endothelial growth factor and integrin αvβ3 levels were increased,and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals.These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor(administered through the lateral ventricle for 7 consecutive days).These data suggest that Buyanghuanwu decoction promotes angiogenesis,improves cerebral circulation,and enhances brain tissue repair after cerebral ischemia/reperfusion injury.