Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but t...Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.展开更多
Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the brakin...Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.展开更多
Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and ...Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.展开更多
In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative bra...In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.展开更多
在能量回馈制动原理的基础上,分别指出无刷直流电机(brushless DC Motor,BLDCM)回馈制动时半桥和全桥脉宽调制(Pulse-Width Modulation,PWM)的优缺点,并在此基础上详细分析了BLDCM的半桥PWM回馈制动原理。针对现有的半桥PWM会在BLDCM回...在能量回馈制动原理的基础上,分别指出无刷直流电机(brushless DC Motor,BLDCM)回馈制动时半桥和全桥脉宽调制(Pulse-Width Modulation,PWM)的优缺点,并在此基础上详细分析了BLDCM的半桥PWM回馈制动原理。针对现有的半桥PWM会在BLDCM回馈制动中引起非导通相续流,从而影响电机运行特性的问题,通过原理分析及数学推导,提出一种PWM-OFF-PWM调制方式,采用该调制方法可消除非导通相续流电流,改善电流波形,减小电磁转矩脉动,在制动过程中获得更大更稳定的制动转矩,进而实现高效回馈制动。仿真和试验分析表明该方法具有比传统半桥PWM调制更优良的特性。展开更多
针对车辆低速行驶的制动能量回收率低,频繁充放电影响动力电池寿命的问题,提出以电池荷电状态(state of charge,SOC)、制动强度、车速和制动间隔时间为输入,再生制动力分配系数为输出的纯电动汽车模糊控制再生制动策略。同时,采用遗传...针对车辆低速行驶的制动能量回收率低,频繁充放电影响动力电池寿命的问题,提出以电池荷电状态(state of charge,SOC)、制动强度、车速和制动间隔时间为输入,再生制动力分配系数为输出的纯电动汽车模糊控制再生制动策略。同时,采用遗传算法对控制参数进行优化。在Simulink中搭建控制策略模型,并在不同测试工况下与CarSim联合进行仿真,结果表明,相比于仅以电池SOC、制动强度和车速为输入的模糊控制再生制动策略,所提策略减少了制动能量回收次数,提高了制动能量回收率。该策略不仅可以改善对动力电池的损害情况,而且可以获得更多的制动能量。展开更多
More than 25%of vehicle kinetic energy can be recycled under urban driving cycles.A single-pedal control strategy for regenerative braking is proposed to further enhance energy efficiency.Acceleration and deceleration...More than 25%of vehicle kinetic energy can be recycled under urban driving cycles.A single-pedal control strategy for regenerative braking is proposed to further enhance energy efficiency.Acceleration and deceleration are controlled by a single pedal,which alleviates driving intensity and prompts energy recovery.Regenerative braking is theoretically analyzed based on the construction of the single-pedal system,vehicle braking dynamics,and energy conservation law.The single-pedal control strategy is developed by considering daily driving conditions,and a single-pedal simulation model is established.Typical driving cycles are simulated to verify the effectiveness of the single-pedal control strategy.A dynamometer test is conducted to confirm the validity of the simulation model.Results show that using the single-pedal control strategy for electric vehicles can effectively improve the energy recovery rate and extend the driving range under the premise of ensuring safety while braking.The study lays a technical foundation for the optimization of regenerative braking systems and development of single-pedal control systems,which are conducive to the promotion and popularization of electric vehicles.展开更多
A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which i...A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.展开更多
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2008AA11A126)Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0498)
文摘Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.
基金Supported by Jiangsu Provincial Key R&D Program(Grant No.BE2019004)National Natural Science Funds for Distinguished Young Scholar of China(Grant No.52025121)+1 种基金National Nature Science Foundation of China(Grant Nos.51805081,51975118,52002066)Jiangsu Provincial Achievement Transformation Project(Grant No.BA2018023).
文摘Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.
基金Electric Automobile and Intelligent Connected Automobile Industry Innovation Project of Anhui Province of China(Grant No.JAC2019022505)Key Research and Development Projects in Shandong Province of China(Grant No.2019TSLH701).
文摘Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.
基金Supported by National Natural Science Foundation of China(No.61370088)International Scientific and Technological Cooperation Projects of China(No.2012DFB10060)Topic of the Ministry of Education about Humanities and Social Sciences of China(No.12JDGC007)
文摘In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.
文摘在能量回馈制动原理的基础上,分别指出无刷直流电机(brushless DC Motor,BLDCM)回馈制动时半桥和全桥脉宽调制(Pulse-Width Modulation,PWM)的优缺点,并在此基础上详细分析了BLDCM的半桥PWM回馈制动原理。针对现有的半桥PWM会在BLDCM回馈制动中引起非导通相续流,从而影响电机运行特性的问题,通过原理分析及数学推导,提出一种PWM-OFF-PWM调制方式,采用该调制方法可消除非导通相续流电流,改善电流波形,减小电磁转矩脉动,在制动过程中获得更大更稳定的制动转矩,进而实现高效回馈制动。仿真和试验分析表明该方法具有比传统半桥PWM调制更优良的特性。
文摘针对车辆低速行驶的制动能量回收率低,频繁充放电影响动力电池寿命的问题,提出以电池荷电状态(state of charge,SOC)、制动强度、车速和制动间隔时间为输入,再生制动力分配系数为输出的纯电动汽车模糊控制再生制动策略。同时,采用遗传算法对控制参数进行优化。在Simulink中搭建控制策略模型,并在不同测试工况下与CarSim联合进行仿真,结果表明,相比于仅以电池SOC、制动强度和车速为输入的模糊控制再生制动策略,所提策略减少了制动能量回收次数,提高了制动能量回收率。该策略不仅可以改善对动力电池的损害情况,而且可以获得更多的制动能量。
基金This work was supported by the National Natural Science Foundation of China(Grant No.51675324).
文摘More than 25%of vehicle kinetic energy can be recycled under urban driving cycles.A single-pedal control strategy for regenerative braking is proposed to further enhance energy efficiency.Acceleration and deceleration are controlled by a single pedal,which alleviates driving intensity and prompts energy recovery.Regenerative braking is theoretically analyzed based on the construction of the single-pedal system,vehicle braking dynamics,and energy conservation law.The single-pedal control strategy is developed by considering daily driving conditions,and a single-pedal simulation model is established.Typical driving cycles are simulated to verify the effectiveness of the single-pedal control strategy.A dynamometer test is conducted to confirm the validity of the simulation model.Results show that using the single-pedal control strategy for electric vehicles can effectively improve the energy recovery rate and extend the driving range under the premise of ensuring safety while braking.The study lays a technical foundation for the optimization of regenerative braking systems and development of single-pedal control systems,which are conducive to the promotion and popularization of electric vehicles.
基金Supported by the National Natural Science Foundation of China(No.50875054)Weihai Science and Technology Development Plan Project(No.2012DXGJ13)
文摘A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.