期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management
1
作者 Feng Zhao Xiaotong Zhu +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第9期2585-2601,共17页
In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strat... In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed.Firstly,the construction of the hybrid regenerative braking energy recovery system is explained.Then,based on the power demand of low-voltage load in metro stations,a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions,and the control methods of each system are set.Finally,the correctness and effectiveness of the dual-mode strategy are verified through simulation,and the proposed braking energy utilization scheme is compared with other singleform utilization schemes.The results illustrate that the hybrid system with the dual-mode strategy can effectively recycle the regenerative braking energy of metro train and inhibit the busbar voltage fluctuation;the proposed braking energy utilization scheme has certain advantages on energy recovery and DC bus voltage stabilization compared with other single-form schemes;the proposed power management strategy can correctly allocate the reference power of each system with a lower construction cost. 展开更多
关键词 Metro train regenerative braking energy energy feed-back system energy storage system power management
下载PDF
Optimal energy saving in DC railway system withon-board energy storage system by using peak demand cutting strategy 被引量:2
2
作者 Chaiyut Sumpavakup Tosaphol Ratniyomchai Thanatchai Kulworawanichpong 《Journal of Modern Transportation》 2017年第4期223-235,共13页
A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a... A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a study on optimal energy saving in DC-electrified railway with on-board energy storage system(OBESS) by using peak demand cutting strategy under different trip time controls.The proposed strategy uses OBESS to store recovered braking energy and find an appropriated time to deliver the stored energy back to the power network in such a way that peak power of every substations is reduced.Bangkok Mass Transit System(BTS)-Silom Line in Thailand is used to test and verify the proposed strategy.The results show that substation peak power is reduced by63.49% and net energy consumption is reduced by 15.56%using coasting and deceleration trip time control. 展开更多
关键词 DC-electrified railway energy saving On-board energy storage system regenerative braking energy Peak power reduction
下载PDF
Simulating train movement in an urban railway based on an improved car-following model 被引量:2
3
作者 叶晶晶 李克平 金新民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期65-69,共5页
Based on the optimal velocity car-following model, in this paper, we propose an improved model for simulating train movement in an urban railway in which the regenerative energy of a train is considered. Here a new ad... Based on the optimal velocity car-following model, in this paper, we propose an improved model for simulating train movement in an urban railway in which the regenerative energy of a train is considered. Here a new additional term is introduced into a traditional car-following model. Our aim is to analyze and discuss the dynamic characteristics of the train movement when the regenerative energy is utilized by the electric locomotive. The simulation results indicate that the improved car-following model is suitable for simulating the train movement. Further, some qualitative relationships between regenerative energy and dynamic characteristics of a train are investigated, such as the measurement data of regenerative energy presents a power-law distribution. Our results are useful for optimizing the design and plan of urban railway systems. 展开更多
关键词 urban railway system train movement regenerative braking energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部