Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-develo...Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-developed region in western China,while the rural Qinghai-Tibetan Plateau(QTP)lies west of the SCB.Previous regional and national atmospheric modeling studies have sug-gested that large areas in the SCB-to-QTP transect region experience excessive deposition of sulfur and nitrogen.In this study,we applied a passive monitoring method at 11 sites(one in urban Chengdu and 10 from fivenature reserves)in this transect region from September 2021 to October 2022 to confirm the high sulfur and nitrogen deposition fluxes and to understand the gaps between the modeling and observation results for this transect region.These observations suggest that the five reserves are under eutrophication risk,and only two reserves are partially under acidification risk.Owing to the complex topography and landscapes,both sulfur and nitrogen deposition and critical loads exhibit large spatial variations within a reserve,such as Mount Emei.Regional atmospheric modeling may not accurately capture the spatial variations in deposition fluxes within a reserve;however,it can capture general spatial patterns over the entire transect.This study demonstrates that a combination of state-of-the-art atmospheric chemical models and low-cost monitoring methods is helpful for ecological risk assessments at a regional scale.展开更多
A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions a...A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.展开更多
Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous doc...Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.展开更多
This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated depos...This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.展开更多
The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modem destructive earthqu...The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modem destructive earthquakes in SWCR and 40 in SCBR are gathered respectively. All their magnitude parameters are checked. Based on the statistic relations between epicentral intensity and magnitude as well as relation between sensible radius and magnitude, the near and far field seismic intensity attenuation features are represented and controlled. And then the seismic intensity attenuation relations along major axis, minor axis and mean axis are established separately. The system-atic deviations of surface wave magnitude between China seismograph network and U.S. seismograph network are considered in this paper. By making use of the new attenuation relations of bedrock horizontal ground acceleration response spectrum in west U.S., the attenuation relations of bedrock horizontal ground acceleration response spec- trum in SWCR and SCBR are digital transformed based on the attenuation model considering acceleration saturation of distance and magnitude in near field.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41929002)Science and Technology Department of Sichuan Province(No.2021YFS0338)。
文摘Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-developed region in western China,while the rural Qinghai-Tibetan Plateau(QTP)lies west of the SCB.Previous regional and national atmospheric modeling studies have sug-gested that large areas in the SCB-to-QTP transect region experience excessive deposition of sulfur and nitrogen.In this study,we applied a passive monitoring method at 11 sites(one in urban Chengdu and 10 from fivenature reserves)in this transect region from September 2021 to October 2022 to confirm the high sulfur and nitrogen deposition fluxes and to understand the gaps between the modeling and observation results for this transect region.These observations suggest that the five reserves are under eutrophication risk,and only two reserves are partially under acidification risk.Owing to the complex topography and landscapes,both sulfur and nitrogen deposition and critical loads exhibit large spatial variations within a reserve,such as Mount Emei.Regional atmospheric modeling may not accurately capture the spatial variations in deposition fluxes within a reserve;however,it can capture general spatial patterns over the entire transect.This study demonstrates that a combination of state-of-the-art atmospheric chemical models and low-cost monitoring methods is helpful for ecological risk assessments at a regional scale.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2016YFA0600704)the National Natural Science Foundation(Grant No.41375104)the Climate Change Specific Fund of China(Grant Nos.CCSF201626 and CCSF201509)
文摘A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.
基金financially supported by the National Natural Science Foundation of China(grant No. 41402103,41502114 and 41372124)
文摘Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.
基金funded by The China Geological Survey (Grant No. 12120113010200)Ministry of Science and Technology of the People’s Republic of China (Grant No. 2011FY110100-5)The National Natural Science Foundation of China (Grant No. 41101086)
文摘This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.
基金National Key Technologies Research and Development Program (2006BAC13B01-0604)Social Welfare Re-search Program from Ministry of Science and Technology of China (2005DIB3J119)
文摘The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modem destructive earthquakes in SWCR and 40 in SCBR are gathered respectively. All their magnitude parameters are checked. Based on the statistic relations between epicentral intensity and magnitude as well as relation between sensible radius and magnitude, the near and far field seismic intensity attenuation features are represented and controlled. And then the seismic intensity attenuation relations along major axis, minor axis and mean axis are established separately. The system-atic deviations of surface wave magnitude between China seismograph network and U.S. seismograph network are considered in this paper. By making use of the new attenuation relations of bedrock horizontal ground acceleration response spectrum in west U.S., the attenuation relations of bedrock horizontal ground acceleration response spec- trum in SWCR and SCBR are digital transformed based on the attenuation model considering acceleration saturation of distance and magnitude in near field.