Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10,...Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10, PM2.5, SO2, NO2, O3 and CO) in Central Liaoning Urban Agglomeration(CLUA) and Harbin-Changchun Urban Agglomeration(HCUA) in NEC Plain were analyzed in this study based on three-year hourly observations of air pollutants and meteorological variables from 2015 to 2017.The results indicated that the annual mean concentrations of air pollutants are generally higher in the middle and southern regions in NEC Plain and lower in the northern region.Megacities such as Shenyang, Harbin and Changchun experience severe air pollution, with a three-year averaged air quality index(AQI) larger than 80, far exceeding the daily AQI standard at the first-level of 50 in China.The annual mean PM and SO2 concentrations decrease most significantly in NEC urban agglomerations from 2015 to 2017, followed by CO and NO2, while O3 shows a slight increasing trend.All the six pollutants exhibit obvious seasonal and diurnal variations, and these variations are dictated by local emission and meteorological conditions.PM2.5 and O3 concentrations in NEC urban agglomerations strongly depend on wind conditions.High O3 concentrations at different cities usually occur in presence of strong winds but are independent on wind direction(WD), while high PM2.5 is usually accompanied by weak winds and poor dispersion condition, and sometimes also occur when the northerly or southerly winds are strong.Regional transport of air pollutants between NEC urban agglomerations is common.A severe haze event on November 1–4, 2017 is examined to demonstrate the role of regional transport on pollution.展开更多
With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relati...With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014–2016. In recent years, the concentrations of all air pollutants, except O3,decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days(i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2.However, particulate matter pollution has declined gradually, while O3 pollution worsened.Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity.The air quality improvement in recent years was mainly attributed to emission reductions.During 2014–2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound(VOC)emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.展开更多
基金Under the auspices of National Key Research and Development Program of China(No.2017YFC0212301,2016YFC0203304)Basic Research Funds of Central Public Welfare Research Institutes(No.2018SYIAEZD4)+3 种基金Program of Liaoning Meteorological Office(No.201904,D201603)Key Program of National Natural Science Foundation of China(No.41730647)Program of Laboratory of Atmospheric Chemistry,China Meteorological Administration(No.2017B02)Key Program of Natural Science Foundation of Liaoning Province(No.20170520359)
文摘Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10, PM2.5, SO2, NO2, O3 and CO) in Central Liaoning Urban Agglomeration(CLUA) and Harbin-Changchun Urban Agglomeration(HCUA) in NEC Plain were analyzed in this study based on three-year hourly observations of air pollutants and meteorological variables from 2015 to 2017.The results indicated that the annual mean concentrations of air pollutants are generally higher in the middle and southern regions in NEC Plain and lower in the northern region.Megacities such as Shenyang, Harbin and Changchun experience severe air pollution, with a three-year averaged air quality index(AQI) larger than 80, far exceeding the daily AQI standard at the first-level of 50 in China.The annual mean PM and SO2 concentrations decrease most significantly in NEC urban agglomerations from 2015 to 2017, followed by CO and NO2, while O3 shows a slight increasing trend.All the six pollutants exhibit obvious seasonal and diurnal variations, and these variations are dictated by local emission and meteorological conditions.PM2.5 and O3 concentrations in NEC urban agglomerations strongly depend on wind conditions.High O3 concentrations at different cities usually occur in presence of strong winds but are independent on wind direction(WD), while high PM2.5 is usually accompanied by weak winds and poor dispersion condition, and sometimes also occur when the northerly or southerly winds are strong.Regional transport of air pollutants between NEC urban agglomerations is common.A severe haze event on November 1–4, 2017 is examined to demonstrate the role of regional transport on pollution.
基金supported by the National Science and Technology Program of China(Nos.2017YFC0211601,2016YFC0202700)the National Natural Science Foundation of China(No.81571130090)the National Research Program for Key Issues in Air Pollution Control(No.DQGG0103)
文摘With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014–2016. In recent years, the concentrations of all air pollutants, except O3,decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days(i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2.However, particulate matter pollution has declined gradually, while O3 pollution worsened.Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity.The air quality improvement in recent years was mainly attributed to emission reductions.During 2014–2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound(VOC)emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.