A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained wi...A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network.展开更多
Objectives: This article presents a new computational procedure to discover scratches buried in the earth's crust. We also validate this new interdisciplinary analysis method with regional gravity data located in a ...Objectives: This article presents a new computational procedure to discover scratches buried in the earth's crust. We also validate this new interdisciplinary analysis method with regional gravity data located in a well-known Dabie orogenic zone for test. Methods: Based on the scratch analysis method evolved with mathematical morphology of surfaces, we present a procedure that extracts information of the crustal scratches from regional gravity data. Because the crustal scratches are positively and highly correlated to crustal deformation bands, it can be used for delineation of the crustal deformation belts. The scratches can be quantitatively characterized by calculation of the ridge coefficient function, whose high value traces delineate the deformation bands hidden in the regional gravity field. In addition, because the degree of crustal deformation is an important indicator of tectonic unit divisions, so the crust can be further divided according to the degree of crustal deformation into some tectonic units by using the ridge coefficient data, providing an objective base map for earth scientists to build tectonic models with quantitative evidence. Results: After the ridge coefficients are calculated, we can further enhance the boundary of high ridge-coefficient blocks, resulting in the so-called ridge-edge coefficient function. The high-value ridge-edge coefficients are well correlated with the edge faults of tectonic units underlay, providing accurate positioning of the base map for compilation of regional tectonic maps. In order to validate this new interdisciplinary analysis method, we select the Dabie orogenic zone as a pilot area for test, where rock outcrops are well exposed on the surface and detailed geological and geophysical surveys have been carried out. Tests show that the deformation bands and the tectonic units, which are conformed by tectonic scientists based on surface observations, are clearly displayed on the ridge and ridge-edge coefficient images obtained in this article. Moreover, these computer-generated images provide more accurate locations and geometric details. Conclusions: This work demonstrates that application of modern mathematical tools can promote the quantitative degree in research of modern geosciences, helping to open a door to develop a new branch of mathematical tectonics.展开更多
A statistical correlation method is used to study the effect of instability of the calculation datum ( used in traditional method of indirect adjustment) on calculated gravity results, using data recorded by Longmen...A statistical correlation method is used to study the effect of instability of the calculation datum ( used in traditional method of indirect adjustment) on calculated gravity results, using data recorded by Longmen Mountain regional gravity network during 1996 -2007. The result shows that when this effect is corrected, anomalous gravity changes before the 2008 Wenchuan Ms8. 0 earthquake become obvious and characteristically distinctive. Thus the datum-stability problem must be considered when processing and analyzing data recorded by a regional gravity network.展开更多
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri...The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.展开更多
Using the data at the county levcl and the regional gravity center model, we calculated six key socio-economic gravity centers, namely population, GDP, output values of primary, secondary and tertiary industries, and ...Using the data at the county levcl and the regional gravity center model, we calculated six key socio-economic gravity centers, namely population, GDP, output values of primary, secondary and tertiary industries, and arable land area in the Tarim River Basin for each year from 1980 to 2009. We inspected the spatial dynamics of these centers and found that the gravity centers of population and economy evolved simultaneously. The disproportional growth between the population and the economy is also analyzed. The results show that: 1) The gravity centers of the GDR the output values of the main three industries and arable land area show migration trending from southwest to northeast, while the population gravity center shows an excessive growth in the southwest during the same time period. The migration amplitude of the GDP and output values of primary industry, secondary industry, tertiary industry are measurably higher than that of the population. 2) The population gravity center has a negative correlation with the gravity centers of secondary and tertiary industries output values in both longitudinal and latitudinal directions, and a positive correlation with that of primary industry output value in the longitudinal direction. Based on the analysis of correlation coefficient and offset distance, the imbalance between the population and the economy has increased since the 1980s, with regional economic differences now exceeding the international cordon.展开更多
The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,suc...The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.展开更多
The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated...The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank.展开更多
Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep fa...Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model) of isostatic gravity mechanisms (local versus regional) in this region to calculated the isostatic gravity anomaly (IGA). Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone. which is due to the Indian-Eurasian continental collision.展开更多
基金funded by The Fundamental Research Funds for Chinese Academy of surveying and mapping(AR2402)Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(No.WHYWZ202213)。
文摘A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network.
基金National Science Foundation and Chinese Geological Survey for supporting this work
文摘Objectives: This article presents a new computational procedure to discover scratches buried in the earth's crust. We also validate this new interdisciplinary analysis method with regional gravity data located in a well-known Dabie orogenic zone for test. Methods: Based on the scratch analysis method evolved with mathematical morphology of surfaces, we present a procedure that extracts information of the crustal scratches from regional gravity data. Because the crustal scratches are positively and highly correlated to crustal deformation bands, it can be used for delineation of the crustal deformation belts. The scratches can be quantitatively characterized by calculation of the ridge coefficient function, whose high value traces delineate the deformation bands hidden in the regional gravity field. In addition, because the degree of crustal deformation is an important indicator of tectonic unit divisions, so the crust can be further divided according to the degree of crustal deformation into some tectonic units by using the ridge coefficient data, providing an objective base map for earth scientists to build tectonic models with quantitative evidence. Results: After the ridge coefficients are calculated, we can further enhance the boundary of high ridge-coefficient blocks, resulting in the so-called ridge-edge coefficient function. The high-value ridge-edge coefficients are well correlated with the edge faults of tectonic units underlay, providing accurate positioning of the base map for compilation of regional tectonic maps. In order to validate this new interdisciplinary analysis method, we select the Dabie orogenic zone as a pilot area for test, where rock outcrops are well exposed on the surface and detailed geological and geophysical surveys have been carried out. Tests show that the deformation bands and the tectonic units, which are conformed by tectonic scientists based on surface observations, are clearly displayed on the ridge and ridge-edge coefficient images obtained in this article. Moreover, these computer-generated images provide more accurate locations and geometric details. Conclusions: This work demonstrates that application of modern mathematical tools can promote the quantitative degree in research of modern geosciences, helping to open a door to develop a new branch of mathematical tectonics.
基金supported by the Eathquake Science Join Foundation( A07030)
文摘A statistical correlation method is used to study the effect of instability of the calculation datum ( used in traditional method of indirect adjustment) on calculated gravity results, using data recorded by Longmen Mountain regional gravity network during 1996 -2007. The result shows that when this effect is corrected, anomalous gravity changes before the 2008 Wenchuan Ms8. 0 earthquake become obvious and characteristically distinctive. Thus the datum-stability problem must be considered when processing and analyzing data recorded by a regional gravity network.
基金supported by the National Natural Science Foundation of China (Nos.41374023,41131067,41474019)the National 973 Project of China (No.2013CB733302)+2 种基金the China Postdoctoral Science Foundation (No.2016M602301)the Key Laboratory of Geospace Envi-ronment and Geodesy,Ministry of Education,Wuhan University (No.15-02-08)the State Scholarship Fund from Chinese Scholarship Council (No.201306270014)
文摘The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.
基金Under the auspices of National Basic Research Program of China(No.2010CB951003)
文摘Using the data at the county levcl and the regional gravity center model, we calculated six key socio-economic gravity centers, namely population, GDP, output values of primary, secondary and tertiary industries, and arable land area in the Tarim River Basin for each year from 1980 to 2009. We inspected the spatial dynamics of these centers and found that the gravity centers of population and economy evolved simultaneously. The disproportional growth between the population and the economy is also analyzed. The results show that: 1) The gravity centers of the GDR the output values of the main three industries and arable land area show migration trending from southwest to northeast, while the population gravity center shows an excessive growth in the southwest during the same time period. The migration amplitude of the GDP and output values of primary industry, secondary industry, tertiary industry are measurably higher than that of the population. 2) The population gravity center has a negative correlation with the gravity centers of secondary and tertiary industries output values in both longitudinal and latitudinal directions, and a positive correlation with that of primary industry output value in the longitudinal direction. Based on the analysis of correlation coefficient and offset distance, the imbalance between the population and the economy has increased since the 1980s, with regional economic differences now exceeding the international cordon.
基金the National Natural Science Foundation of China(Nos.41974095,41774090,and U1939205)the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB20X09,and DQJB21R30)The first author acknowledges support from the China Postdoctoral Science Foundation(No.2018M641424)。
文摘The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.
文摘The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank.
基金supported by the China Earthquake Administration,Institute of Seismology Foundation(IS201416141)Spark Plan(XH17022)
文摘Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model) of isostatic gravity mechanisms (local versus regional) in this region to calculated the isostatic gravity anomaly (IGA). Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone. which is due to the Indian-Eurasian continental collision.