The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy wa...The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattem of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis展开更多
Mantle cell lymphoma (MCL) is an aggressive histotype of B-cell non-Hodgkin lymphoma. The disease has no known cure, which prompts the urgent need for novel therapeutic agents. Chromosomal region maintenance 1 (CRM...Mantle cell lymphoma (MCL) is an aggressive histotype of B-cell non-Hodgkin lymphoma. The disease has no known cure, which prompts the urgent need for novel therapeutic agents. Chromosomal region maintenance 1 (CRM1) may play a role in human neoplasia and serve as a novel target of cancer treatment. This study summarizes MCL pathogenesis and determines the involvement of CRM1 in the regulation of several vital signaling pathways contributing to MCL pathogenesis, including the pathways of cell cycle progression, DNA damage response, phosphoinositide kinase-3, nuclear factor-kB activation, and chromosomal stability. A preclinical study is also presented to compare the CRNI1 status in MCL cell lines and primary MCL cells with normal B cells, as well as the therapeutic efficiency of CRM1 inhibition in MCL in vitro and in vivo, which make these agents potential targets of novel MCL treatments.展开更多
基金the Major State Basic Research Development Program of China(2010CB530105 and 2011CB504802)the National Natural Science Foundation of China(30900059,30870120 and 81000736)the Start-up Fund of the Hundred Talents Program of the Chinese Academy of Sciences(20071010-141)
文摘The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattem of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis
基金supported in part by grants from Fujian Provincial Department of Science & Technology(2009-CXB-57/ 2011J01252)Bureau of Science & Technology of Xiamen,China (3502Z20094012)
文摘Mantle cell lymphoma (MCL) is an aggressive histotype of B-cell non-Hodgkin lymphoma. The disease has no known cure, which prompts the urgent need for novel therapeutic agents. Chromosomal region maintenance 1 (CRM1) may play a role in human neoplasia and serve as a novel target of cancer treatment. This study summarizes MCL pathogenesis and determines the involvement of CRM1 in the regulation of several vital signaling pathways contributing to MCL pathogenesis, including the pathways of cell cycle progression, DNA damage response, phosphoinositide kinase-3, nuclear factor-kB activation, and chromosomal stability. A preclinical study is also presented to compare the CRNI1 status in MCL cell lines and primary MCL cells with normal B cells, as well as the therapeutic efficiency of CRM1 inhibition in MCL in vitro and in vivo, which make these agents potential targets of novel MCL treatments.